US009170798B2

a2z United States Patent (10) Patent No.: US 9,170,798 B2
Nagaraja et al. 45) Date of Patent: Oct. 27,2015
(54) SYSTEM AND METHOD FOR CUSTOMIZING 7,024,668 B2 4/2006 Shiomi et al.
ADEPLOVIENTPLANFORANUITLTIER 13020 B 200 e
APPLICATION IN A CLOUD 7356679 Bl 42008 Leetal. '
INFRASTRUCTURE 7370322 Bl 5/2008 Matena etal.
7,533,381 B2 5/2009 Ando
(75) Inventors: Vishwas Nagaraja, Sunnyvale, CA 7,577,722 Bl 8/2009 Khandekar et al.
(US); Komal Mangtani, Los Altos, CA 7,634,488 B2 12/2009 Keys et al.
(US); Sesh Jalagam, Union City, CA 7,874,008 B2 1/2011 Chang et al.
(US); David Winterfeldt, San Francisco, (Continued)
CA (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: VMware, Inc., Palo Alto, CA (US)
EP 2299360 Al 3/2011
(*) Notice: Subject to any disclaimer, the term of this EP 2381363 A2 10/2011
patent is extended or adjusted under 35 P 2007-507046 3/2007
U.S.C. 154(b) by 487 days.
OTHER PUBLICATIONS
(21) Appl. No.: 13/411,357 i)) i .
Konstantinou et al., “An Architecture for Virtual Solution Composi-
(22) Filed: Mar. 2, 2012 tion and Deployment in Infrastructure Clouds,” Jun. 2009, ACM, p.
9-17.*
(65) Prior Publication Data (Continued)
US 2013/0232463 Al Sep. 5, 2013
(51) Int.ClL Primary Examiner — Qing Chen
GO6F 9/445 (2006.01)
GO6F 9/455 (2006.01)
GOG6F 9/46 (2006.01) (57) ABSTRACT
GOGF 9/48 (2006.01))
(52) US.CL A deployment system enables a developer to customize a
CPC ... GOGF 8/61 (2013.01); GOGF 9/45533 deployment plan generated according to a logical, multi-tier
(2013.01); GO6F 9/4843 (2013.01) application blueprint for deploying multiple applications in a
(58) Field of Classification Search cloud infrastructure. Using the deployment system, the devel-
CPC ... GOG6F 8/60; GOGT 8/61; GOGF 9/45533; oper inserts a custom script or task in a sequence of tasks to be
GO6F 9/4843 performed to deploy an application component in different
USPC oo, 717/174-178; 718/1,100 phases (e.g., installation, configuration, start-up) on a virtual
See application file for complete search history. machine. The deployment system anchors the custom script
to the different phases of the application component’s deploy-
(56) References Cited ment such that the customizations to the deployment plan are

U.S. PATENT DOCUMENTS

6,266,809 Bl 7/2001 Craigetal.
6,609,128 Bl 8/2003 Underwood
6,976,093 B2 12/2005 Laraetal.

P —
Application Director 106

Topology
Generator 120

Blueprint 126

S

Deployment Plan
Generator 122

Deployment
Plans 128

(
|
|
|
|
|
|
|
|
|
|

maintained through changes to the underlying application
blueprint.

19 Claims, 17 Drawing Sheets

’Cloud Computing Platform Provider 110

Deployment
Environment 112

ment

(Do

Deploy
Director 124

Deployment
Environment 112

US 9,170,798 B2
Page 2

(56)

7,971,059

8,074,218

8,091,084

8,108,912

8,176,094

8,176,559

8,201,237

8,225,093

8,327,357

8,359,594

8,375,360

8,407,689

8,429,630

8,578,375

8,584,119

8,627,310

8,682,957

8,819,673
2002/0178254
2003/0061247
2004/0030710
2004/0183831
2005/0022198
2005/0198303
2005/0257206
2005/0278518
2005/0289536
2006/0010176
2006/0037071
2006/0079356
2006/0080412
2006/0136701
2006/0136897
2006/0248522
2007/0058548
2007/0204262
2007/0209035
2008/0046299
2008/0109788
2008/0163171
2008/0163194
2008/0209016
2008/0244577
2008/0307414
2009/0070752
2009/0070853
2009/0100420
2009/0112919
2009/0172781
2009/0187995
2009/0216970
2009/0276771
2009/0320012
2009/0320019
2010/0103837
2010/0131590
2010/0142447
2010/0146425
2010/0175060
2010/0251328
2010/0257605
2010/0281166
2010/0318649
2010/0325624
2010/0333085
2011/0004916
2011/0029947
2011/0055707
2011/0055714
2011/0055828
2011/0061046
2011/0107411
2011/0126197
2011/0145790
2011/0145836

References Cited

U.S. PATENT DOCUMENTS

B2
B2
Bl
B2
B2
B2
Bl
B2
B2
Bl
B2
B2
B2
B2
B2
B2
B2
Bl
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

6/2011
12/2011
1/2012
1/2012
5/2012
5/2012
6/2012
7/2012
12/2012
1/2013
2/2013
3/2013
4/2013
11/2013
11/2013
1/2014
3/2014
8/2014
11/2002
3/2003
2/2004
9/2004
1/2005
9/2005
11/2005
12/2005
12/2005
1/2006
2/2006
4/2006
4/2006
6/2006
6/2006
11/2006
3/2007
8/2007
9/2007
2/2008
5/2008
7/2008
7/2008
8/2008
10/2008
12/2008
3/2009
3/2009
4/2009
4/2009
7/2009
7/2009
8/2009
11/2009
12/2009
12/2009
4/2010
5/2010
6/2010
6/2010
7/2010
9/2010
10/2010
11/2010
12/2010
12/2010
12/2010
1/2011
2/2011
3/2011
3/2011
3/2011
3/2011
5/2011
5/2011
6/2011
6/2011

Calman et al.
Eilam et al.
Dobrovolskiy et al.
Ferris

Friedman

Mathur et al.
Doane et al.

Fok et al.

Amsden

Davidson et al.

I’ Anson

Dournov et al.
Nickolov et al.
Pagan et al.
Ellington et al. 717/177
Ashok et al.

Elson et al.
Wilkinson et al.
Brittenham et al.
Renaud

Shadleocoocvvrvivnnnne 707/102
Ritchy et al.
Olapurath et al. 718/102
Knauerhase et al.
Semerdzhiev

Ko et al.

Nayak et al.
Armington

Rao et al.

Kodama et al.
Oprea et al.
Dickinson
Laxminarayan et al.
Lakshminarayanan et al.
Babonneau et al.
Ahluwalia et al.
Sonderegger et al.
Simons et al.
Prieto .ccvevvvvivieiin 717/115
Chess et al.

Dias et al.

Karve et al.

Le et al.

Alpern et al.
Alpern et al.
Chung et al.
Sapuntzakis et al.
De Spiegeleer
Masuoka et al.
Lopatic

Basler et al.
Nickolov et al.
Lee et al.
Ellington et al. 717/177
Jungck et al.
Coleman et al.
Schlicht et al.
Lance et al.
Boykin et al.

Syed et al.
McLaughlin et al.
Buyya et al.
Moore et al.
Bartolo et al.
Criddle et al.
Schiffman et al.
Markovic

Kimmet
Vemulapalli et al.
Amsden

Phillips

McClain et al.
Larsen et al.
Rajaraman et al.
Wheeler et al.

2011/0153684 Al 6/2011 Yung
2011/0153727 Al 6/2011 Li
2011/0153824 Al 6/2011 Chikando et al.
2011/0167469 Al 7/2011 Letca et al.
2011/0214124 Al 9/2011 Ferris et al.
2011/0231552 Al* 9/2011 Carteretal. 709/226
2011/0258333 Al 10/2011 Pomerantz et al.
2011/0258619 Al 10/2011 Wookey
2011/0271280 Al 11/2011 Cao etal.
2011/0276713 Al 11/2011 Brand
2011/0296052 Al 12/2011 Guo et al.
2011/0302569 Al 12/2011 Kunze et al.
2012/0072480 Al 3/2012 Hays et al.
2012/0084769 Al 4/2012 Adi et al.
2012/0102481 Al 4/2012 Mani et al.
2012/0151273 Al 6/2012 Ben Oret al.
2012/0159469 Al 6/2012 Laor
2012/0185913 Al 7/2012 Martinez et al.
2012/0240135 Al 9/2012 Risbood et al.
2012/0254850 Al 10/2012 Hido et al.
2012/0266159 Al 10/2012 Risbood et al.
2012/0291045 Al 11/2012 Martin
2012/0324116 Al 12/2012 Dorai et al.
2013/0006689 Al* 1/2013 Kinnearetal. 705/7.16
2013/0041931 Al 2/2013 Brand
2013/0185715 Al 7/2013 Dunning et al.
2013/0218731 Al 8/2013 Elson et al.
2013/0227091 Al 82013 Tompkins
2013/0232480 Al 9/2013 Winterfeldt et al.
2014/0082167 Al 3/2014 Robinson et al.

OTHER PUBLICATIONS

Sun et al., “Simplifying Service Deployment with Virtual Appli-
ances”, 2008 IEEE International Conference on Services Computing,
Jul. 7, 2008, pp. 265-272.

International Search Report dated Jun. 28, 2012 in PCT application
PCT/US2012/033356, filed Apr. 12, 2012, with written opinion.
Partial European Search Report dated Jul. 1, 2011, Application No.
11163533.0, filing date Apr. 21, 2011, 6 pages.

Goodwill, James: “Java Web Applications”, O’Reilly, Mar. 15,2001,
pp. 1-3, XP002646828, Retrieved from the Internet: URL: http://
onjava.com/Ipt/a/671 [retrieved on Jun. 30, 2011].

Goodwill, James: “Deploying Web applications to Tomcat”,
O’Reilly, Apr. 19, 2001, pp. 1-11, XP002646829, Retrieved from the
Internet: URL: http://oreilly.com/lpt/a/780 [retrieved on Jun. 30,
2011].

Laurent Tonon: “Tomcat Architecture Diagram”, Apr. 26, 2011, p. 1,
XP002646830, Retrieved from the Internet: URL: http://marakana.
com/forums/tomcat/general/106 html [retrieved on Jul. 1, 2011].
Leitner P. Application Level Performance Monitoring of Cloud ser-
vices, Dec. 2012, vol. 9, pp. 1-8.

White page of BMC software, “Virtualization management with
BMC and VMware” © 2011 BMC software, 2 pages.

Wei et al., “Managing security of virtual machine images in a cloud
environment”, Nov. 13, 2009, 6 pages.

Hansen et al., “Scalable Virtual machine storage using local disks”,
Dec. 2010, 9 pages.

Michade L. Armbrust et al., A View of cloud Computing, 2010 ACM,
pp. 50-58; <<http://dl.acm.org/citation.cfm?id=>.

H. Andres Lagar-Cavilla et al.; SnowFlock Rapid Virtual Machine
Cloning for Cloud Computing; 2009 ACM; pp. 1-12; <http:dl.acm.
org/citation.cfm?id=1519067>.

Matthias Schmidt et al., Efficient distribution of virtual machines for
cloud computing; 2010 IEEE; pp. 567-574; <http://iecexplore.icce.
org/stamp/stamp.jsp?tp=arnumber=5452476>dlacm.org/citation.
Jacob Gorm Hansen et al., Lithium Machine Storage for the Cloud,
2010 ACM; pp. 15-26; ; <http://dlacm.org/citation.
cfm?id=1807134>.

Dave Thomas; Enabling Application Agility—Software as a Service,
Cloud Computing and Dynamic Languages; 2008 Jot; pp. 29-32;
<http:jot.fm/issues/issue_2008__05/column3.pdf>.

Fen Liu, et al. Saas Integration fro Software Cloud; 2010 IEEE; pp.
402-409 <http://ieecexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=5557968>.

* cited by examiner

US 9,170,798 B2

Sheet 1 of 17

Oct. 27, 2015

U.S. Patent

P ittt

uswAoldsq

Z 1 | luswuodiaug

I 3¥NOI4

vEl (i
soday Bo|eien

<>

~

J ﬂ TZr Joeuq

Yvyy

Ll J9plADId wioleld

Z1 1 uswuodiAug
Juswholdaq

Bunndwon u:o_o

> uswAoldaq
[

y

8¢l sueld
wswAholdsqg

el Jojeiauan)
rcm_n_ 1uswAoldsq

A

J

y

Z1 uuden|g

021 Jojelousn
ABojodo |

(. J/

A

Z071 Jadojeas

0T Jojensiuiwpy

A

| 90T Jopau uonedyjddy
S

U.S. Patent Oct. 27, 2015 Sheet 2 of 17 US 9,170,798 B2

202

/"

Generate a blueprint, for an application to
be deployed, having a logical topology of
virtual computing resources and application
components

l L 204

Generate a deployment plan based on the
blueprint to deploy the application in a cloud
environment

I
Optionally, modify the deployment plan by |
inserting custom tasks to be executed |

Execute deployment plan by providing
deployment agents with local deployment
plans based on the generated deployment

plan

END

FIGURE 2

US 9,170,798 B2

Sheet 3 0f 17

Oct. 27, 2015

U.S. Patent

80E ~

90| Jowauip uonesidde
0] Z| | SIUBLUUCIIAUS
juswAojdap pue seedwe)
PNO|2 3|ge|IBAR JO 1SI| 8PIACIH

*

s|enuapal

Jopinoad pnojo a1eonusyIny

90¢€ -/

wuoyjeld Bunndwon pnojn

0Ll J9piroad

Ve 34NOId
yee
A AATEN
0c | Bojeieo ojul syse; wosng Lasu| —
sway)| -
e ~ Juudan|q jo og | Bojeleo ojul sjuauoduwlod asu| “
* [}
0Ll Jepiaoid
g1~ pnop wouy saje|dwa) pnop pue saledwus) -
|eo160| pe1oajas usamiag Buiddew a1eisUSD) “
A
(422 swaj)l Judanig -
10 0g | Bojzeo ol seyejdwa) |eo160] Jesy| m
> 1
1 [}
-~ oLe |
“ Y H
i SIUBLLIUOJIAUD
i——-»] JuswAoidep pue sare|dwa) pnoj s|qelier.
Ym 31BID0SSE pue Japiaold pnojo Ja)sibay
H
-+ L
' 0l | Jopiroid pnojo
[AIIII_

0] UOI193UUO0D S]EPI[BA PUB S|IIUSPAID SAISISY

v0g —/

901 4030841q uonedlddy

[}
1
-

SYSB] Wolsno Ajnadg

voze—'

A

sjuauodwod uonesldde Alinadg

0zs —/

|

0L Jopiroid

pnojo wo.) sejejdws) pnojo alow
Jo auo pue a1eidwa) |eo1bo| 198198

[|

s92.n0sal Bunndwos

[enuIA JO sa1ejdwa) [eo1bo| Alloads

zLe—/

A

s|enuspaJo pue s|ie1ep

Japiaoid pnojo spiaoid pue uiboT

20c —/

Y0l Jojesisiuiwpy

US 9,170,798 B2

Sheet 4 of 17

Oct. 27, 2015

U.S. Patent

8¢ 3¥NOI4

Jasn 0] abessaw uonelsusb
[NISS829NS 9PIACIH

ON

A4 .\

SOA

<oz >

S10J18 JO] 9Z | Juldan|g Yo8yD

ove—"

A

9g | uudsnig ojul

(sepou Jojpue) sjusuodwos uoneoldde
pa129|as Usamiaq Aouspuadap uasuy|

S EEEE

gee—"

A

sjusuodwos uoneoldde pue sapou

lg--—--

10 suonoe pue ‘saiadold ‘spe1ap ALPON !

peg—"

3

9g | judan|g ojul

-

Sjusuodwod uonedlidde pa19|as 1asUy| I

oge—"

A

soie|dwa) [eo160| po1asjes Jo pasliduwod

S9pOoU YIIM 97| 1ulidan|q a1elsusn

aze—"

901 J1030241q uonedljddy

9cl
juidan|g Jo UoNE3IpUI SNB)S SAI808Y

— 97¢

A

S9pOoU Jo/pue sjuauoduiod
uoneoidde om) 1se9| 1B 199|9S

— 9¢C

A

sjusuodwod
uoljeolidde pue sapou 9zZIWo}snd

L— CE¢

A

0c| Bojeyeo
wol sjusuodwod uonesidde 199)98

— 8¢¢

A

0cl
Bojeieo wo.y seiejdwsa) [ealbo) 19898

L— vC¢

(o1 10)ensiuIpY JO Z0| Jodojaraq)

198

US 9,170,798 B2

Sheet 5 0f 17

Oct. 27, 2015

U.S. Patent

o0y

80v

¥ "Old
26"y eby ouediy |y
Buioyuopy a 14414
07430 //
22 9yoedy Sor J‘
SIBAIBS GO\ A cov Slningiin N
0’} saibisogn B _ I S~_ 0¥
07 800BUON T | | . 26 CHO0MTIUNGN
| mh_“_._Mw N | _ RSN 9 MUNanN B
N JETOSINY L___J o 0} 19 STISE
9OMIROH T N 0} 26 SIS ey
SI9AISS g0 A T~ o —
0'G ssogr Q] - - . e
7 Jonaga) 8LYy N ﬁ 9'G PISOWB) By
gesied g o N o N T o A 9'G ¢ESOWR) BF
$10Mag Uopealddy a 9'G ¢eSOW8) 1 9GZeSOola) 9'G ¢ESOR) so1eidwa) SO a
(oieag | 0’} 2a4Wa9) M §°G $OSOIUSD R
SR0IOS A TOSAN Jontegddyssogr ¥'| TOSAN YiM 9'G ZESONI8D By,
E— — sloAlag 9Seqejeq a
Yo & Jduos qp il ils r+ 1 g7 9yoedy (Joess)
Jduos ToS soejduia] 191507 a
o O add
\\ weo Aqny o aseqejep Jonas dde JoOUB[eq pEQ OOM-8110Id A8 1
=\ /S AN /L / \ 1-d@ueg s@inq &
Ul e N sa[u0Jd Juswhojdeq =
Hvig \ O wdeng g
Sjuauodwo) apo?) a % % ﬂ H v Juudan|g - uoyeaddy AW uonealddy Ay =2
oo) J
ZZy 9cl

US 9,170,798 B2

Sheet 6 of 17

Oct. 27, 2015

U.S. Patent

G 34N9I4
P e P PP > ueld JuswAo|dap mainoy — V1G
]
!)
! I
. I
salouapuadap ay; 0] Buipiodoe syse) ay) I
Bunnooaxa Joj ue|d JuswAo|dop 9jeIouUDD) "
zig—" 1 _
I
judan|q 01 Buipioooe "
$YSB) Usam)aq salouspusdap suluusag |
I
/Y
ors—" |
I
usuodwos uoneoldde pue apou yoesa - I
Aojdep 0] painosxe aq 0} SHse} aulwidaq m l
7 7Y L] ss|adoud
809 jusuodwod uoneadde aziwolsny — 905
wdonq Jjo soejdway |eoibo| 0] A
paddew aJe jey; EMEcoLSco wswAio|dap A.---.“---- uoneaidde Aojdap o7 yorym 206
Po}O3|9S 10} SS)E|dLS) PNOJO SASISY U0 JUBWIUOJIAUD JuswAo|dap 199|198

pos—"

90| Joj2a1q uonjesijddy

(01 10je3SIUIWIPY 10 20} Jadojara()
Jasn

US 9,170,798 B2

Sheet 7 of 17

Oct. 27, 2015

U.S. Patent

V9 ANOId

809

\

ﬂ 00's ToSAN 4\ ﬂ

TIVLSNI -1duos gp

1duos™gp _ 4\

ﬁ 18V1S - TOSAN L/ ﬁ

o 0'S TOSAN

JHNDIINOD - TOSAN

o 0’ TosSAN

1
W\ (e
1

TIVLSNI - TOSAN

asegelep

o9 — |

909

ddy ueg

TIVLSNI
- ddy jueg

1
)

1dv1s |
- Janlogddyssogr }: -

0°0°G ssodr

JANDIANOD
Jantogddyssogr

-

0°0°G ssodr

TIVLSNI
Jantegddyssogr

0'2'Z syoedy

1¥V1S - g7 syoedy

Ei=laiall

o’
'SR

0'Z'Z syoedy

4ANOO - g7 ayoedy ;z

J\ ﬁ o Z'Z ayoedy

ﬁ._._<._.mz_ g7 syoedy

Lwocm_mglumoc

ue|d uonnosxg - uonedddyAN

US 9,170,798 B2

Sheet 8 of 17

Oct. 27, 2015

U.S. Patent

g9 §NOId

1duosgp yul 0'0'S TOSAN

TIVLSNI - 3duos gp nul 1MVLS - TOSAN

00°S TOSAN

IHNDIANOD - TOSAN

N
©

TIVLSNI - TOSANW

00'S TOSAN W

owmgmﬂme

ﬁ 0'0°G ssogr

ﬁ TIVLSNI

0'0'¢ ssodr

FUNDIANOD
- Jansogddyssogr

0'0'¢ ssodr

IRSLARS
- Janiegddyssogr

TIVLSNI
- ddy ueg

- Janlasddyssogr

lonies dde

)

ddy yueg _ _ 00'g ssodr _ _ﬁ 0'0'g ssodr 0°0°¢ ssodr
TIVLSNI 14V1S JHNOIINOD TIYLSNI
- ddy yueg - Janlagddyssogr - Jansagddyssogr ping
/ e 14VLS

[z] 1onies—dde g\

0'2'C dyoedy J\ ﬁ 0'Z'Z 8yoedy J\ ﬁ 0'Z'C dyoedy

1¥v1S - d1 ayoedy % ﬁm_m:o_“_zoo - g7 syoedy TIVLSNI - g7 syoedy

Lwocm_mn\uwoc

ue|d uonnoax3 - uoneolddyAn

US 9,170,798 B2

Sheet 9 of 17

Oct. 27, 2015

U.S. Patent

99 FdNOI
) . ™ ("
H_ 0°0'S TOSAN 0°0°S TOSAN 9'G ZESOIURD
- A - A
» [3HNOI4NOD - TOSAN (_ TTV.LSNI - TOSAW NOISINOYd
aseqgejep ﬁ aseqgelep L
909 709 /
N 819 /
1 \
006 ssogr 0'0'G ssogr
JHNDIANOD TIVLSNI - o
uo: use
- Jonlagddyssogr ﬁ-hmimmaa,quom:. ping CESOWTD CESOWTY foidag
: 1lyvls NOISIAOHd NOISIAOYd 1yvis
Janles dde ;
IIIIIIIIIIIIIIII -
I
N/ 9'G ZESOIULD
ﬂ o zT mﬁm% /d\ ﬁ 0'Z'Z dyordy NOISINOYd
Frm_m_:w_“_zoo g7 eyoedy ;z ﬁ._._ﬁmz_.m_.ﬂm%m% ﬁ — ;
Jaoueleq peo|
@ @ ._wocm_mnlumoC 8cl
ue|d uonnooxg - uonedlddyAp

009 A

US 9,170,798 B2

Sheet 10 of 17

Oct. 27, 2015

U.S. Patent

L 34NSOI4

0l/ $SS2IN0Say alempleH

[™\

——— e —————————————— ~

“ l Z luswuoJiaug
............................) uonezienuip

~ J

[zl ue|d wawAhojdeq

._irﬁ Y21 Jopaaqg

Yvyy

e —_———— Y
- - ~
| ‘ «. | \
“ gzZ ueld gzZ ueld " ==7
_ Aojdap [eo0 "Aojdap 8207 | jopaig |
_ 9277 Jusby 927 ueby _ pNo|D
| wswAholdag wawAholdag |
| YY) _
I ¥z Z wouodwo) $ZZ suodwo) I
" uoneoiddy uoneo|ddy "
_ WETT INA 'FTT NA _ 0L |,
_ — _ Jajnoy
I Z1 T luswuoliAug JuswAholdaq |

._A\ﬁ wawAhoideq

901 Jojoaug uoneolddy
A

0GZ J9sn pu3s

Y

US 9,170,798 B2

Sheet 11 of 17

Oct. 27, 2015

U.S. Patent

0cL
JaAe| A1onoasip pue Buissaippe

BIA 91B01I1ISD Buisn snejs
s)1seopeo.q 9z / webe juswAioideq

(44

mw'k A

2J40)sAay ojul wodwi pue 8)edlLs9
SoAIB08 9z / 1uabe JuswAhojdeg

0¢

w'\ A

Aoy Aleiodwa] pue aweU
ananb Buisn uoneoUBYINE [BRIUl
s1sonbas gz 1wsbe JuswAioldeg

14

g i

9z/ wabe juswAo|dop youne|
‘obeyoed AJLISA pue aAIRI9Y

A

g —/ 4

yZ| Jojoaup JuswAojdep wou)
6xd jusbe JuswAo|dap 1senbay

80

V8 NOId

9zg deis o

0z/ 19Ae| Aion0dsIp pue Buissaippe
BIA SIAI/A WOJ) SUOIBIIPUI SNJBIS SAIS09Y

vz —’ L)

1wsbe JuswAo|dsp

Bunssnbal 0] o1106ds 81821111482 NWSURL |

818 —/ A

aweu ananb siyy Jo) Aoy Atesodwa)

1958l PUE 1| A 81eduayiny

919 —/ L)

11 WA 01 suoneunbijuoo pue sbeyoed
1usbe JuswAoldap pajsenbal Jwsuel|

1duos deJjsjooq youne| pue 1004

- - -

008 —/

PLENA

018 —/ A

soje|dwa) pnojo 0}
Buiploooe saulyoewW [BNUIA
8)Jeald pue }senbal 91909y

gz | ueid uswAo|dep uo paseq $924N0Sa.
Bunndwos |enuiA 1o uoisirnold 1sanboy

08 —/

Z0. J0joauq pnojo

208 —/

21 10)03J1q a:wE>O_QQD

US 9,170,798 B2

Sheet 12 of 17

Oct. 27, 2015

U.S. Patent

068 ~

g8 JdN9Id

senjeA Aladold pue sniejs %Se) aAIs0eYy

sonjea Auadoud pojepdn pue snels

)SBe) sjwisuel) 9z/ juabe juswAoldaq

768 —/ L)

768

»

0z/ JeAe| A1an0asIp pue Buissalppe BIA San|eA
Ausdoud pue uonezuoyNe uonnIaxs Jwsuel |

8Y38 —~

soanjea Auadoud Buizijiin Jusuodwod
uoneoldde Joj ySe] 91N29X]

g —/ 3

WA J0i saiadoud o sanjea jusling 9jenjeAag

»

973~

sanjea
Allaedoud pue uoneziioyine uonnoaxs
SOAI80384 97/ 1usbe Juswho|daqg

»

€8~

YEM

uo spuadap yse; paisanbal
1811 $ysSe) pelejdwooun Aug aJe sJay] JI sullLIB1a(

+

8e8 —/ 3

CcE8—~

0z / JeAe| Ausnoasip pue Buissaippe

BIA 159nb3al UOINO3XD YSB) SHWSUR.]
9z / 1usbe juswAoldsp ‘gz/ ued

1UsWAQ|dap [B2O| Ul 3SB] 1X8U B 104

INA B UO pajnosxs
2(01 %se] e 10} }senbal UoiIN0aXd SAI909Y

A

ogg —/ A

A

0zZ. J9he| Aloaoosip pue Buissalppe
BIA NA Yoes 0] g/ ue(d juswAo|dap |BoO| JiLusuel |

0€8~

INA siu3 Joj gz ueld Juswihojdap
[B20| SOAI993. 9/ 1uabe JuawAoldeq

828 — A

("pLL INA O3 'FLL NA “B°8) SWA

gz | ue|d JuswAo|dap Uo paseq
WA yoes Joj gz/ ue(d juswAo|dap |Bo0| 81BI8USS)

oz8 —/
¥z 1030841q Juawhojdaqg

US 9,170,798 B2

Sheet 13 0of 17

Oct. 27, 2015

U.S. Patent

98 FHNOI4

.8

02/ 1ofe|
AIBA02SIp pue Buisssippe eIA ssuodsal

1eaqguesy sluwsued] 9z uabe juswAojdeg

[

A

898~

abessaw 1eaquesy SaAI9al 97/
1uabe JuswAojdop “ser Jo uonnaaxs Bulng

A

A

878~

sanjeA Auadoud Buizinn
Jusuodwod uoiesi|dde 1oL yse) 81ndaxg

J

3

98—

sonjeA Aliadoud pue uonezioyne
UOIIN29XS SBAI9JaJ 9/ 1udbe JuswAoidag

("pLL INA O3 'FLL INA “6°8) SWA

Jouie Juswholdap
podaJ pue Jno pall] YSe) Spou auIwlS}s(
998 —/ A
o Jowin Yse) spou 19sa. P
‘asuodsal Jeaquesy aAle0sy |
0.8 —/ SOA
AERERE)
asuodsal
1e9gesH
99
Spou JNO pawil 0] Jeaguesy
Jjwisuel) ‘Jawi ysey spou Jo Alidxs uodpn
298 —’ A
> Jauwlly yse) apou sjeniy|
098 —/ 4
02/ Jehe|

Kianodsip pue Buissalppe elA sanjea Auadoud
pUB UOIIBZIIOYINE UOIINISXd JIWSURI |

bhg —/

2} J0)9au1q JusawAojdag

US 9,170,798 B2

Sheet 14 of 17

Oct. 27, 2015

U.S. Patent

/

716 90Bdg UONNISXT SUIYORI [BNUIA

AW

6 3dNOId
206 wJoje|d a.emplieH
016 806 906 706
JOSS9201d Alows| WolsAS JIN nun abeIOIS
Z16 JosInIsdAH

o || o ||| 7 226 026 316 m

m m oee | m P LAV Ndo OIN SAlIQ PaeH | |}

i 5T ! | e ‘976 W.IOpeld SIempIeH [BNMIA | !

[} [} I

oA T AR 'FE6 (ININA) JOHUOW BUILOBI [BNHIA |
{)
m 926 We)sAg BuijesadQ 1se9n9) m
m “
“ (1]] “
1 ST 1L o1 1
| |ouson| |seuewod 5z F2Z 1uau0dui0) m
m . : Jusby juswio|daq uonealddy '
| :
! i
! 'PIT NA JouBu0) m

US 9,170,798 B2

Sheet 15 0of 17

Oct. 27, 2015

U.S. Patent

0L 1NOI4

SYSEe} WOoIsnd
UIm Jouis Buresipul

obessow 1Is[e 9)1BIsuUSD)

8z | ueid uswAo|dop PaIIPOU MBIASY

L—0c01

Jasn 0] sbesssaw
uonessuab |NiSS89NS SPIAOIH

~~—0101

gio.— 4

ON

¢lolg
SOA
7101

aoe|d yse] woisno
Buruieiurew ajym gz | uerd juswAo|dep
0] sebueyo Buipuodsaulod wiolad

A

zioL—" ’

9pOoU B uIylm sjusuodwod uonesiidde
9A0WIAI 10 ppe 0} 9Z | uldaniq ALpon

L—0101

SYSe)] Pa129|as JO JOPIO UOINISXd
abueyo 0] gz| ue|d juswAojdap Ajipo

A
I

800, — A

sol|ouapuadop awly
1usWAodap Anpow 29 0] S$YSE] 109|198

—9001

JApJO UoIINdaXd
UIYIIM SUOIJBJ0| Paloads e SySe) Wojsnd
uasul 01 @z | ueld JuswAojdap Anpop

A

y00L —

90} J0}0311q uonedlddy

wewAodap Bulnp sepou 1e
pauwuolad ag 0] $3se) woisnd Aloadg

L—c¢001

(¥01 101R13SILIWIPY 10 ZO| JadojaArsq)
losn

US 9,170,798 B2

Sheet 16 of 17

Oct. 27, 2015

U.S. Patent

Ll 3¥NOI4

801 L 0l | //
)]
duos gp 00'S TOSAN _ 00°S TOSAW _ _ 0°0°S TOSANW _ _
<
TIVLSNI IRENAKS IHUNDIANOD TTVLSNI
- 1duos gp - 1084 - TOSAN {)
[SseqElR
(/ aeiep)

ping
an3

®0O

-

TIVLSNI
- ddy yueg

ﬂ 0°0°¢ ssogr

TIVLSNI
- Jlansagddyssogr

0°0°G ssogr

14v1s
- Jantagddyssogr

0°0'G ssodr

JFHNOIANOD
- Jantagddyssogr

0722 ayoedy

14V1S - g7 eyoedy

07Z'Z ayoedy 4\

JHNDIINOD - 971 eyoedy

0'2'Z ayoedy

sz,ﬁmz_ - g7 eyoedy

o’
R
—,

Lwo:m_mglumoc

ue|d uonnoaaxg - uonedlddyAp

Q0L1

US 9,170,798 B2

Sheet 17 of 17

Oct. 27, 2015

U.S. Patent

¢l 3dNOI4

20¢ _‘/

<

syse] |euis)xg

% Biyuoo
“sodaJ wnA

v0zL” 7oz

09 909 voLlL
A N ~

]
jduos gp 0'0'S TOSAN _ 0'0'S TOSAN _ _ 00'S TOSAN _

TIVLSNI NR-LARS JFANOIANOD TIVLSNI

-1duos gp 1l - TOSAN - TOSAN

- TOSAN

|A;
—

aseqe)e
e} _Q
ddy yueg 0'0'G ssogr 00°G ssogr ﬁ 00°G ssogr
TIVLSNI 1dV1S JANDIANOD TIVLSNI
- ddy jueg - Janlagddyssogr - lanlagddyssogr - Janiagddyssogr ping
h 14V1S
|
. [71Jsales dde *A |

ue|d uonnoaaxg - uonealddyA

0Ll
0ocl A

US 9,170,798 B2

1
SYSTEM AND METHOD FOR CUSTOMIZING
A DEPLOYMENT PLAN FOR A MULTI-TIER
APPLICATION IN A CLOUD
INFRASTRUCTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the U.S. patent application
Ser. No. 13/411,364, entitled “Single, Logical, Multi-Tier
Application Blueprint Used for Deployment and Manage-
ment of Multiple Physical Applications in a Cloud Infrastruc-
ture”, the U.S. patent application Ser. No. 13/411,376,
entitled “Execution of a Distributed Deployment Plan for a
Multi-Tier Application in a Cloud Infrastructure”, and the
U.S. patent application Ser. No. 13/411,385, entitled “System
to Generate a Deployment Plan for a Cloud Infrastructure
According to Logical, Multi-Tier Application Blueprint”,
which are assigned to the assignee of this application and
have been filed on the same day as this application.

BACKGROUND

“Infrastructure-as-a-Service” (also commonly referred to
as “TaaS”) generally describes a suite of technologies pro-
vided by a service provider as an integrated solution to allow
for elastic creation of a fully virtualized, network, and pooled
computing platform (sometimes referred to as “cloud com-
puting platform™). Enterprises may use laaS as a business-
internal organizational cloud computing platform (some-
times referred to as a “private cloud”) that gives an
application developer access to infrastructure resources, such
as virtualized servers, storage, and networking resources. By
providing ready access to the hardware resources required to
run an application, the cloud computing platform enables
developers to build, deploy, and manage the lifecycle ofa web
application (or any other type of networked application) at a
greater scale and at a faster pace than ever before.

However, deployment tools currently in use are usually a
homegrown patchwork of various software products from
different vendors. Such tools are generally process-driven
with heavy reliance on custom scripts and property files.
Additionally, these tools often utilize too much network
bandwidth through continuous polling for readiness of execu-
tion or rely on a centralized mechanism that causes a central
point of resource contention. Traditional deployment tools
are also not configured for automation with cloud computing
platforms that dynamically provision virtual computing
resources.

Further, applications are typically developed with a multi-
tier architecture in which functions such as presentation,
application processing, and data management are logically
separate components. For example, an enterprise’s custom
banking application that has a multi-tier architecture may use
a cluster of application servers (e.g., JBoss Application Serv-
ers) to execute in a scalable runtime environment, a relational
database management system (e.g., MySQL) to store account
data, and a load balancer to distribute network traffic for
robustness. To deploy such a multi-tier application, a devel-
oper, who understands the architecture of the application,
must coordinate with a system administrator, who controls
access to computing resources, to determine which comput-
ing resources (e.g., computing, networking, and storage) and
software services (e.g., software packages) should be provi-
sioned to support execution of the application. However,
developers and system administrators typically view an appli-
cation differently. Developers see an application as a group of

20

30

40

45

55

2

components with interdependencies, while system adminis-
trators view an application as a series of “runbook” steps to be
followed for deployment. As such, there are challenges for
developers and system administrators to collaborate on deter-
mining deployment requirements for an application.

SUMMARY

One or more embodiments of the present invention provide
a deployment system for deploying a multi-tier application to
a cloud computing environment. This deployment system
enables a developer or “application architect” to create
“application blueprints.” The application blueprints define
the structure of the application, enable the use of standardized
application infrastructure components, and specify installa-
tion dependencies and default configurations. The applica-
tion blueprints define the topology for deployment in an infra-
structure-agnostic manner to be portable across different
cloud computing environments.

According to embodiments, a deployment plan for an
application is generated using one such application blueprint
described above. The deployment plan is separated and dis-
tributed as local deployment plans having a series of tasks to
be executed by virtual machines provisioned from a cloud
computing environment. Each virtual machine coordinates
execution of each task with a centralized deployment module
to ensure that tasks are executed in an order that complies with
dependencies specified in the application blueprint.

A method of modifying a deployment plan having tasks
that are performed to deploy an application having applica-
tion components executing on a plurality of virtual computing
resources, according to an embodiment, includes receiving a
script and a placement location for the script in sequence of
tasks that are performed to deploy one of the application
components. The method further includes generating a modi-
fied deployment plan that includes the script for execution at
the placement location, wherein the deployment plan is gen-
erated according to a topology of the virtual computing
resources and the application components executing thereon.

A non-transitory computer-readable storage medium com-
prises instructions that, when executed in a computing device,
modify a deployment plan having tasks that are performed to
deploy an application having application components execut-
ing on a plurality of virtual computing resources. The non-
transitory computer-readable storage medium includes, in an
embodiment, instructions for performing the steps of receiv-
ing a script and a placement location for the script in a
sequence of tasks that are performed to deploy one or more of
the application components, and generating a modified
deployment plan that includes the script for execution at the
placement location according to a topology of the virtual
computing resources and the application components execut-
ing thereon.

A computer system for managing deployment of an appli-
cation having multiple application components executing on
a plurality of virtual computing resources, includes, in an
embodiment, a system memory and a processor programmed
to carry out the steps of receiving a script and a placement
location for the script in a sequence of tasks that are per-
formed to deploy one or more of the application components.
The system memory and processor are further programmed to
carry out the steps of generating a modified deployment plan
having the sequence of tasks that are performed to deploy the
application according to a topology of the virtual computing
resources and the application components executing thereon.

US 9,170,798 B2

3

Inan embodiment, the modified deployment plan includes the
script for execution at the placement location.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts one embodiment of a system for deploying
an application on multiple cloud computing environments.

FIG. 2 is a flow diagram for deploying an application on a
cloud computing environment

FIGS. 3A and 3B are flow diagrams that illustrate steps for
generating an application blueprint for an application.

FIG. 4 is a conceptual diagram illustrating a user interface
for generating an application blueprint for an application to
be deployed.

FIG. 5 is a flow diagram that illustrates steps for generating
a deployment plan based on an application blueprint.

FIGS. 6A-6C show example user interfaces for viewing a
deployment plan generated according to an application blue-
print.

FIG. 7 depicts an example cloud computing platform with
which one embodiment of the present invention may be uti-
lized.

FIG. 8A is a flow diagram that illustrates steps for coordi-
nating communication between a deployment server and
deployment agents executing on VMs in a cloud computing
environment.

FIGS. 8B and 8C are flow diagrams that illustrate steps for
executing a deployment plan to deploy an application on VMs
in a cloud computing environment.

FIG. 9 depicts provisioned virtual machines in a cloud
computing platform architecture for hosting an application.

FIG. 10 is a flow diagram that illustrates steps for modify-
ing a deployment plan generated from an application blue-
print for an application to be deployed.

FIGS. 11-12 show example user interfaces for modifying a
deployment plan generated according to an application blue-
print.

DETAILED DESCRIPTION

FIG. 1 depicts one embodiment of a system for deploying
an application on multiple cloud computing environments. In
this embodiment, a multi-tier application created by devel-
oper 102 is being deployed for enterprise 100 in a deployment
environment 112 provided by a cloud computing platform
provider 110 (sometimes referred to simply as “cloud pro-
vider”). As depicted in FIG. 1, cloud computing platform
provider 110 may provide multiple deployment environments
112, for example, for development, testing, staging, and pro-
duction of the application. Enterprise 100 may access ser-
vices from cloud computing platform provider 110, for
example, via REST (Representational State Transfer) APIs
(Application Programming Interface) or any other client-
server communication protocol. One particular implementa-
tion of a REST API for cloud computing services is vCloud
Director API available from VMware, Inc. Cloud computing
platform provider 110 provisions virtual computing
resources (e.g., virtual machines, or “VMs,” 114) to provide a
deployment environment 112 in which enterprise 100 can
deploy its multi-tier application. One particular example of a
deployment environment is one implemented using cloud
computing services from a vCloud DataCenter available from
VMware, Inc. Cloud computing platform provider 110 is
shown in greater detail and discussed below in conjunction
with FIG. 7.

A developer 102 of enterprise 100 uses an application
director 106, which may be running in one or more VMs, to

10

15

20

25

30

35

40

45

50

55

60

65

4

orchestrate deployment of a multi-tier application 108 onto
one of deployment environments 112 provided by a cloud
computing platform provider 110. As illustrated, application
director 106 includes the following software modules: a
topology generator 120, a deployment plan generator 122,
and a deployment director 124. Topology generator 120 gen-
erates a blueprint 126 that specifies a logical topology of the
application 108 to be deployed. Blueprint 126 generally cap-
tures the structure of an application 108 as a collection of
application components executing on virtual computing
resources. For example, blueprint 126 generated by applica-
tion director 106 for an online store application may specify
a web application (e.g., in the form of'a Java web application
archive or “WAR” file comprising dynamic web pages, static
web pages, Java servlets, Java classes, and other property,
configuration and resources files that make up a Java web
application) executing on an application server (e.g., Apache
Tomcat application server) and that uses as a database (e.g.,
MongoDB) as a data store. It is noted that the term “applica-
tion” is used herein to generally refer to a logical deployment
unit, comprised of application packages and their dependent
middleware and operating systems. As such, in the example
described above, the term “application” refers to the entire
online store application, including application server and
database components, rather than just the web application
itself.

Blueprint 126 may be assembled out of items from a cata-
log 130, which is a listing of available virtual computing
resources (e.g., VMs, networking, storage) that may be pro-
visioned from cloud computing platform provider 110 and
available application components (e.g., software services,
scripts, code components, application-specific packages) that
may be installed on the provisioned virtual computing
resources. Catalog 130 may be pre-populated and customized
by an administrator 104 (e.g., I'T or system administrator) that
enters in specifications, configurations, properties, and other
details about each item in catalog 130. Blueprint 126 may
define one or more dependencies between application com-
ponents to indicate an installation order of the application
components during deployment. For example, since a load
balancer usually cannot be configured until a web application
is up and running, developer 102 may specify a dependency
from an Apache service to an application code package.

Deployment plan generator 122 of application director 106
generates a deployment plan 128 based on blueprint 126 that
includes deployment settings for blueprint 126 (e.g., virtual
computing resources’ cluster size, CPU, memory, networks)
and an execution plan of tasks having a specified order in
which virtual computing resources are provisioned and appli-
cation components are installed, configured, and started.
Deployment plan 128 provides an IT administrator with a
process-oriented view of blueprint 126 that indicates discrete
steps to be performed to deploy application 108. Difterent
deployment plans 128 may be generated from a single blue-
print 126 to test prototypes (e.g., new application versions), to
scale-up and scale down deployments, or deploy application
108 to different deployment environments 112 (e.g., testing,
staging, production).

Deployment director 124 of application director 106
executes deployment plan 128 by communicating with cloud
computing platform provider 110 via a cloud interface 132 to
provision and configure VMs 114 in a deployment environ-
ment 112, as specified by deployment plan 128. Cloud inter-
face 132 provides a communication abstraction layer by
which application director 106 may communicate with a het-
erogeneous mixture of cloud provider 110 and deployment
environments 112. Deployment director 124 provides each

US 9,170,798 B2

5

VM 114 with a series of tasks specific to the receiving VM
114 (herein referred to as a “local deployment plan”). The
tasks may be scripts that are executed by VMs 114 to install,
configure, and/or start one or more application components.
For example, a task may be a script that, when executed by a
VM 114, causes VM 114 to retrieve and install particular
software packages from a central package repository 134.
Deployment director 124 coordinates with VMs 114 to
execute the tasks in an order that observes installation depen-
dencies between VM 114 according to deployment plan 128.
After application 108 has been deployed, application director
106 may be utilized to monitor and modify (e.g., scale) the
deployment.

FIG. 2 is a flow diagram of an exemplary deployment
method performed by application director 106 to deploy an
application in a deployment environment 112 provided by
cloud computing platform provider 110. It should be recog-
nized that, even though the method is described in conjunc-
tion with the systems of FIG. 1, any system configured to
perform the method steps, in any order, is within the scope of
embodiments of the invention.

In step 202, in response to user inputs (e.g., from developer
102), application director 106 generates a blueprint 126, for
anapplication to be deployed, that includes a logical topology
of virtual computing resources and application components
for supporting the application. In one implementation, devel-
oper 102 may utilize a graphical user interface provided by
application director 106 to assemble and arrange items from
catalog 130 into a topology that represents virtual computing
resources and application components for supporting execu-
tion of application 108.

In step 204, application director 106 generates a deploy-
ment plan 128 based on blueprint 126 to deploy application
108 in a specific cloud environment (e.g., deployment envi-
ronments 112). Step 204 may be carried out in response to
user inputs (e.g., from developer 102) that initiate a deploy-
ment process for application 108 on a specified deployment
environment. In step 206, responsive to user inputs (e.g., from
developer 102), application director 106 may optionally
modify deployment plan 128 to insert one or more custom
tasks to be executed between tasks of deployment plan 128. In
step 208, in response to user inputs (e.g., from developer 102)
application director 106 executes deployment plan 128 by
providing deployment agents executing within deployment
environment 112 (e.g., on VMs 114) with local deployment
plans based on deployment plan 128. Application director
106 separates deployment plan 128 into local deployment
plans that include a series of tasks to be executed by a VM
114.

Generation of Application Topology

The operations of step 202 are described in further detail in
FIGS. 3A and 3B. It should be recognized that, even though
the operations described in conjunction with the systems of
FIG. 1, any system configured to perform the method steps, in
any order, is within the scope of embodiments of the inven-
tion.

FIG. 3A is a flow diagram that illustrates steps for config-
uring application director 106 to generate an application blue-
print (e.g., blueprint 126) for an application (e.g., application
108). In step 302, an administrator 104 (or other trusted party
having administrative access to IT infrastructure) logs in and
provides application director 106 with details and credentials
for cloud provider 110. For example, administrator 104 may
provide information such as an IP address or hostname at
which cloud provider 110 is accessible, and credentials (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

6

ausername and password) for an account authorized to make
provisioning requests for computing resources. In step 304,
application director receives the credentials and attempts to
validate a connection to cloud provider 110 using the received
credential. In step 306, cloud provider 110 authenticates
application director’s access to computing resources using
the provided credentials.

In step 308, responsive to a successful authentication,
cloud provider 110 provides application director 106 with a
listing of available virtual machine templates and deployment
environments 112. Virtual machine templates are metadata
that describes the configuration of a virtual machine, includ-
ing CPU, memory, network, storage, guest operating system,
and other supporting libraries pre-installed and used to
repeatedly create a VM having the specified settings. Virtual
machine templates that are made available by cloud provider
110 are referred to herein as “cloud templates.” In step 310,
application director 106 registers cloud provider 110 and
stores information about associated cloud templates and
deployment environments 112.

In step 312, administrator 104 specifies one or more logical
templates that may be mapped to actual virtual machine tem-
plates (e.g., cloud templates) provided by cloud providers
110. Logical templates enable application director 106 to
define an application topology in a cloud-agnostic manner. As
with cloud templates, a logical template may specify virtual
computing resources for a virtual machine, such as CPU,
memory, networking, storage, guest operating system, pre-
installed installed runtime environments (e.g., Java Runtime
Environment), and application services and commands (e.g.,
ssh, wget). For example, one logical template may specify a
virtual machine having a guest operating system CentOS
version 5.6 supporting 32-bit architecture, while another logi-
cal template may specify a virtual machine having Red Hat
Enterprise Linux 6.1 supporting 64-bit architecture. In one
embodiment, administrator 104 specifies aname, description,
and descriptive metadata for each logical template. Descrip-
tive metadata, for example, such as non-hierarchical key-
words or “tags,” are used to organize listings of logical tem-
plates and enhance readability of logical templates during
blueprint creation. For example, administrator 104 may tag a
logical template as a “Database Servers” tag and/or an “OS
Templates” tag. Because some application components may
not run on all operating systems, administrator 104 may use
descriptive metadata to label operating systems installed and
supported by the logical templates. Such “operating system
tags” provide system compatibility metadata that may be
used to later limit which application components can be
added to a logical template. For example, if an administrator
104 specifies a logical template having Ubuntu OS installed,
application director 106 may prevent a developer 102 from
later attempting to add a software service that does not run on
Ubuntu onto this logical template.

As part of the logical template definition, administrator 104
may specify one or more software services that are prein-
stalled on the logical template, along with the guest operating
system. For example, in some cases, a performance monitor-
ing agent or virus scanner is preinstalled on a logical tem-
plate. In another example, an application server (e.g., Apache
Tomcat application server) may be preinstalled on a logical
template to speed up deployment of web applications.

In step 314, application director 106 inserts the specified
logical templates into catalog 130 of blueprint items. As a
result of their inclusion in catalog 130, logical templates are
available to users (e.g., developer 102) when creating blue-
prints 126 that define application topologies having one or
more virtual machines, where each virtual machine is repre-

US 9,170,798 B2

7

sented by each instance of a logical template. For example,
the inserted logical template may now appear in a listing of
logical templates shown during creation of application blue-
prints.

In step 316, administrator 104 associates each logical tem-
plate with one or more cloud templates that have been pub-
lished by cloud provider 110 as available for provision. In step
318, application director 106 generates a mapping between
the selected logical templates and one or more cloud tem-
plates. Administrator 104 may map multiple cloud templates
to one logical template to allow for selection of different
cloud templates from different cloud providers at deployment
time. Even when using the same cloud provider, mapping
multiple cloud templates to one logical template enables
selection from different cloud templates at deployment time
to allow for different template configurations. For example,
with multiple cloud templates mapped to the same logical
template, a user deploying to a production environment may
select a cloud template specifying a large amount of disk
space, whereas a deployment to a test or staging environment
may call for selection of a cloud template with a small amount
of disk space.

In step 320, administrator 104 specifies one or more appli-
cation components, such as services and code components,
which may be installed on a virtual machine for supporting
execution of an application. Code components are applica-
tion-specific binaries, scripts, or processes, for example, writ-
ten by developer 102 and packaged into one or more files, to
provide logic for the application. In catalog 130, code com-
ponents are represented as types or formats of scripting and
application code. Examples of types of code components
include Java Archive (JAR) files, Java Enterprise Archive
(EAR) files, Java web application archive (WAR) files, Ruby
Gems packages, SQL scripts, and other suitable modules of
scripting logic.

Services are scripted software that provide a software
infrastructure for an application, and are generally reused in
multiple applications. Examples of services include applica-
tion servers (e.g., Rails, Apache Tomcat, JBoss), database
servers (e.g., GemFire, MySQL, SQLFire, MongoDB, Post-
gres), monitoring services (e.g., Hyperic, SpringInsight), web
servers (e.g., Apache, VMware vFabric Enterprise Ready
Server), messaging services (e.g., RabbitMQ), and other
middleware services.

Administrator 104 may specify a name, version (e.g.,
major, minor, and micro releases), and a textual description
for a service. As with logical templates, a definition of a
service may include descriptive metadata, such as tags, and
information about supported operating systems and compo-
nents. Tags for a service (e.g. “database,” “web servers”) are
used to organize listing of services during blueprint creation.
Information about supported operating systems specifies if a
service can only run on a particular operating system. For
example, during blueprint creation, application director 106
prevents a service from being added to a logical template
unless the logical template contains one of the supported
operating systems. For information about supported compo-
nents, administrator 104 selects what code components can
be added to a service during creation of an application blue-
print. As such, information about supported components indi-
cates if only a certain type of code component may run on this
service. For example, only WAR and JAR components may
run in a Java application server or Apache tomcat server
instance; only SQL scripts can run in a database server.
Administrator 104 may further specify whether a service is or
may be pre-installed on a logical template. Services specified

20

30

40

45

50

8

as “pre-installed on a template™ are available for inclusion in
a logical template definition, as described above.

Administrator 104 may specify one or more properties of
an application component (e.g., services, code components).
Properties for application components are configuration
name-value pairs that are exposed for configuration and
manipulation by application director 106. In one embodi-
ment, properties of an application component define variables
used in installation, configuration, and execution scripts for
an application component. For each property, administrator
104 may specify a name (e.g., “port_num,” “repos_url”), type
(e.g., string, array, content), and a value that represents a
variable value to be substituted for this property when a script
referencing the property is executed. The value of a property
may be a literal or static value (e.g., an “http_port” property
having a value of 80), or may reference other properties
within the blueprint or referenced components in the blue-
print. Properties may also be mapped to dynamic values, such
as a database’s IP address, which can be then be used by an
application to connect to it. For example, a “pkg_path” prop-
erty may have a value of “http://$ {director.server.ip}/ser-
vices/hyperic/installer-4.5-x86-64-linux.tar.gz” which
includes a reference (e.g., “${director.server.ip}”) to an IP
address for a server executing application director 106. As
such, during deployment, the value of the pkg_path property
is dynamically generated to be the IP address of application
director 106 at time of deployment. Property values may be
specified as “secured” for passwords and other properties that
administrator 104 may wish to obscure from users without
administrative privileges (e.g., developer 102).

Administrator 104 may further specify whether a property
of'an application component is overridable in a blueprint 126
such that other users may redefine this property for a particu-
lar application blueprint (i.e., at blueprint creation time) or for
a particular deployment (i.e., at deployment time). For
example, administrator 104 might configure a Java applica-
tion server (e.g., Apache tomcat server) service to have a
default Java Virtual Machine (JVM) heap size of 512 MB.
However, a user (e.g., developer 102) might change this prop-
erty to 1024 MB to suit for a particularly memory-intensive
application or suit a particularly large deployment in a pro-
duction environment.

Administrator 104 may create installation, configuration,
and start scripts for an application component, referred herein
as “actions.” Actions generally include a script comprised of
one or more lines of scripting logic that, when executed by a
virtual machine on which the application component is
hosted, perform operations for an application lifecycle stage
(e.g., install, configure, start, stop, upgrade, migrate, etc.).
Operations performed by an action may include requesting
installation via a package manager (e.g., yum, apt, dpkg),
setting environmental variables, launching runtimes, check-
ing configurations, and other commands. For example, an
action for a database service may include an installation script
that fetches an application package from a package reposi-
tory, unpacks the application package, and executes an
installer using particular installation settings and variables.
Action scripts may be executable by a command-line shell,
such as a UNIX shell (e.g., bash) or Windows PowerShell,
though other suitable scripting environments are within the
scope of the present disclosure.

Administrator 104 specifies a name of the lifecycle stage
(e.g., “install,” “configure,” and “start”) for the action and the
content of the action script. In one embodiment, application
director 106 provides a script editor having a user interface
that lists the properties of the application component which
are available for configuration, setting, and/or manipulation

US 9,170,798 B2

9

by the script. Action scripts may reference properties of an
application component (e.g., $global_conf, $http_port) to
install, configure, or start an application component with
settings from catalog 130 defined by administrator 104. An
example script for an INSTALL action of an application
component (e.g., Apache web server) is shown below in Table
1.

TABLE 1

Sample script for INSTALL action of an application component

#!/bin/bash
Import global conf
$global__conf
export PATH=$PATH:/usr/local/sbin:/ust/local/bin:/sbin:/bin
set -¢
Tested on CentOS
If [-x /ust/sbin/selinuxenabled | &&

/usr/sbin/selinuxenabled; then

if [-x /ust/sbin/setenforce]; then

/usr/sbin/setenforce Permissive
else
echo ‘SELinux is enabled. This may cause installation to \

fail.”

fi
fi
yum --nogpgcheck --noplugins -y clean all
yum --nogpgcheck --noplugins -y install httpd
Ports on which to listen
sed -ie s/ Listen .*/Listen $http_port\nListen $http_ proxy_port/g” \
Jete/httpd/conf/httpd.conf
Set up auto-start on booting
chkconfig httpd on

Referring again to FIG. 2, in step 322, application director
106 inserts the specified application components into catalog
130 of blueprint items. Accordingly, a catalog 130 is gener-
ated by administrator 104 that provides standardized virtual
machine templates and application infrastructure compo-
nents having predetermined installation and configuration
scripts, such that a user (e.g., developer 102) may quickly
create a blueprint of a multi-tier application and avoid having
to define each application component from scratch. While
administrator 104 may specify any number of logical tem-
plates and application components for use by users, it should
be recognized that catalog 130 may already include a library
of standardized and commonly-used application compo-
nents. It should further be recognized that administrator 104
may edit and customize any predefined application compo-
nent in the library of standardized and commonly-used appli-
cation components.

In one embodiment, in step 320A, administrator 104 speci-
fies one or more custom tasks, which may be executed on
virtual machines provisioned during deployment. Custom
tasks generally include a script comprised of one or more
lines of scripting logic that, when executed by a virtual
machine, perform operations for facilitating deployment of
application 108, including monitoring tasks, e-mail and alert
notification tasks, operations that pre-configure a virtual
machine, operations performed prior to provisioning a virtual
machine, and other scripting operations. As with action
scripts described above, custom tasks may reference proper-
ties of an application component (e.g., $Sglobal_conf, $http_
port) to perform operations with settings from catalog 130
defined by administrator 104. In step 322A, application direc-
tor 106 inserts the custom tasks into catalog 130 to be avail-
able for customization of a deployment plan (e.g., deploy-
ment plan 128) as described later in conjunction with FIG. 10.

Operations of FIG. 3A continue to step 324, shown in FIG.
3B. FIG. 3B is a flow diagram that illustrates steps for gen-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

erating an application blueprint 126 for an application 108
utilizing catalog 130 as generated in FIG. 3A. As described
above, a blueprint 126 is an abstract representation of the
structure of application 108 as comprised of virtual machines
and their corresponding application components, operating
systems, dependencies, and configurations. Blueprint 126
standardizes the structure of an application for repeated
deployments in multiple and possibly diverse deployment
environments.

In step 324, a user (e.g., developer 102 or administrator
104) selects one or more logical templates from catalog 130
of items. In step 326, responsive to user input, application
director 106 generates blueprint 126 comprised of the logical
templates selected by the user. In one embodiment, upon
receiving a selection oflogical templates, application director
106 generates a set of “nodes,” which each represent a virtual
machine, or a cluster of virtual machines, configured accord-
ing to the selected logical templates. For example, to create a
blueprint that models a three-tiered application, a user may
select three items from a catalog list of logical templates to
create three nodes representing each tier of the application.
Application components may be later added to each node to
specify which application components are executing on the
node. In one implementation, a graphical user interface is
provided for modeling a blueprint 126 for the application 108,
an example of which is depicted in FIG. 4.

FIG. 4 illustrates a user interface 400 for generating an
application blueprint 126 for an application (e.g., application
108) to be deployed. User interface 400 includes a canvas 402
that provides a graphical view of a blueprint 126 as a sche-
matic diagram of application 108. In the example blueprint
126 shown in FIG. 4, a three-tiered application witha MySQL
database, JBoss Application Server, and an Apache load bal-
ancer is modeled as having three nodes 412 (labeled as “load_
balancer,” “app_server,” and “database”).

User interface 400 includes one or more “palettes” that
display items from catalog 130 that are available for use in
creating a blueprint. As shown, user interface 400 includes a
first palette 404 that lists all logical templates defined in and
available from catalog 130, a second palette 406 that lists
software services defined in and available from catalog 130,
and a third palette 408 that lists types of code components that
may be inserted into a blueprint. Canvas 402 provides drag-
and-drop functionality that enables the user to select and drag
anitem from palettes 404, 406, 408 and drop the selected item
within the boundaries of canvas 402 to insert the selected item
into blueprint 126, as illustrated by arrow 410. In the example
shown, each node 412 has been created from a logical tem-
plate (identified as “CentOS32 5.6” having CentOS 5.6 32-bit
operating system installed.

Referring back to FIG. 3B, in step 328, the user selects one
or more application components from catalog 130 of appli-
cation components and selects a node on which the applica-
tion component may execute. In step 330, responsive to user
input, application director 106 inserts the selected application
components into blueprint 126 as executing a selected node.
In the example three-tiered application in FIG. 4, a user
selects a MySQL database item, a JBoss application server,
and an Apache web server from palette 406 of services and
insert selected item onto a separate node 412. Each node may
host multiple application components. Some application
components, such as services, may host, execute, and/or
deploy certain application components themselves, such as
code components. In the three-tiered application example
above, the user specifies an application component packaged
as an EAR file (identified as “bank_app™) as being deployed
in the JBoss application server. In another example, the user

US 9,170,798 B2

11
may specify an SQL script (identified as “init_db_script” that
is executed by MySQL database to initialize the database.

In step 332, the user customizes one or more nodes and
application components of blueprint 126 by editing details
(e.g., labels, descriptions), properties, and actions of the
nodes and applications components. The customizations
made by the user to the nodes and application components
represent application-specific configurations that override or
replace default configurations provided by catalog 130.

To allow for scaling deployments, the user may specify a
node as a cluster of virtual machines, rather than a single
virtual machine, to enable multiple virtual machines to be
deployed for that particular node. In the three-tiered applica-
tion example above, the app_server node has been specified
as a cluster, and hence multiple virtual machines of this type
can be deployed and managed by the Apache load balancer.
As shown, the clustered node is graphically represented as a
stack of nodes to distinguish from a singular node. The user
specifies a number of virtual machines in the cluster (e.g., 10
VMs). Further, nodes specified as clusters are given special
properties that enable action scripts for an application com-
ponent running on the cluster to be cluster-aware. For
example, a special property “node_array_index” may be used
by an action script to identify which virtual machine the
action script is executing on.

In some deployments, some servers are deployed into an
external-facing network, or DMZ, and some servers are
deployed to a separate network protected by a firewall. To
model this structure, the user may customize a node by defin-
ing multiple network interfaces, sometimes referred to as
“NICs,” to separate data communication with the node into
separated sub-networks. For a given node, the user may
specify more than one NIC, each NIC having a logical net-
work name (e.g., “MgmtNetwork,” “ServiceNetwork™). At
deployment time, the named logical network is mapped to an
actual cloud network provided by cloud provider 110. In the
example three-tiered application example above, the load_
balancer node is planned to be the only node that may be
accessed from a public network (e.g., Internet); the database
and app_server nodes are deployed in a private network. The
load_balancer node should be able to access the database and
app_server nodes. As such, the load_balancer node is speci-
fied with two NICs, a first NIC pointing to a “service” net-
work and a second NIC pointing to a “management” network.
The database and app_server nodes each have one NIC point-
ing to the service network. At deployment time, the service
network can be mapped to a cloud network protected by
firewall and the management network can be mapped to a
public cloud network.

The user may provide a new application-specific property
value that overrides or replaces a default property value
defined in catalog 130. For example, the user may edit the
value of an “http_port” property to configure a customized
port number for a given blueprint. The user may only modify
properties that have been designated as “overridable” by a
definition for the application component in catalog 130. How-
ever, the user may designate, at the blueprint level, whether an
application-specific property for an application component
and/or node is “overridable at deployment” to allow that
property to be further customizable at deployment time.

Similarly, the user may modify an action for an application
component by customizing a default script (e.g., install, con-
figure, start) corresponding to the action as defined in catalog
130. In step 334, responsive to user input, application director
106 modifies details, properties, and actions for nodes and
application components of blueprint 126.

10

15

20

25

30

35

40

45

50

55

60

65

12

The user may specify one or more dependencies between
application components to declare a relationship between the
application components that defines an interconnected struc-
ture of distributed portions of the application (e.g., multiple
tiers of the application). Dependencies may be used to plan
deployment of the application by defining a deployment order
for application components (e.g., that indicates whether
deployment tasks for one item will wait to run until the tasks
for the other item has finished). In the three-tiered application
example, because a load balancer usually cannot be config-
ured until the web application is up and running, the user has
created a dependency from a load balancer (e.g., Apache) to a
web application package (e.g., EAR component) to indicate
that the load balancer should be deployed after the deploy-
ment of the web application is completed.

As such, in step 336, the user may select at least two
application components and/or nodes, for example, by using
a pointer cursor in user interface 400 to select one or more
nodes and/or application components within canvas 402 and
creating a dependency between the application components
via a link button 420. It is appreciated that the user may later
use a pointer cursor to select an existing dependency and
delete and/or modify the selected dependency, for example,
by pressing a delete button 422. In step 338, responsive to user
input, application director 106 inserts a dependency between
the selected application components (and/or nodes) into blue-
print 126. In the three-tiered application example shown in
FIG. 4, a dependency from the Apache load balancer to code
component (e.g., “bank_app”) is depicted by dashed arrow
416 and represents that the Apache load balancer should be
deployed after the installation of the code component (e.g.,
“bank_app”) is completed. Similarly, a second dependency
(depicted by dashed arrows 418) from the code component
(e.g., “bank_app”) to the database initialization script (e.g.,
“init_db_script”) is created to represent that the code compo-
nent (e.g., “bank_app”) should wait until the database node,
the database service, and the SQL script initializing the data-
base have all been run before continuing.

In step 340, application director 106 checks the application
topology defined by blueprint 126 for errors. For example,
application director 106 may verify whether properties have
been correctly specified, that application components are not
missing from any required actions, or that invalid or circular
dependencies have not been created. In step 342, responsive
to not detecting any errors within blueprint 126, application
director 106 transmits a successful blueprint generation mes-
sage to the user, and in turn, in step 346, the user receives a
status indication regarding generation of blueprint 126. Alter-
natively, in step 344, responsive to detecting an error within
blueprint 126, application director 106 transmits an error
message to the user. Application director 106 may provide the
user with opportunities to perform one or more remedial
actions to correct any detected errors.

Generation of Deployment Plan

From an application blueprint 126, a user may generate
multiple deployment plans 128 having configurations cus-
tomized for a variety of deployment environments and/or
cloud providers, for example, for testing prototypes, deploy-
ing to staging environments, or upgrading existing deploy-
ments. While blueprints 126 provide a component-oriented
view of the application topology, deployment plans 128 pro-
vide a step-oriented view of the application topology defined
in blueprint 126 that depicts time dependencies between tasks
to deploy the application components in a particular order.
Deployment plans 128 provide settings, such as cloud tem-

US 9,170,798 B2

13

plates, networks, and application component properties
allowed for use in specific deployment environments.

FIG. 5 is a flow diagram that illustrates steps for generating
a deployment plan 128 according to an application blueprint.
It should be recognized that, even though the steps are
described in conjunction with the systems of FIG. 1, any
system configured to perform the method steps, in any order,
is within the scope of embodiments of the invention.

In step 502, a user (e.g., developer 102 or administrator
104) selects a deployment environment in which to deploy the
application. The deployment environment may be selected
from a listing of deployment environments available from by
cloud providers 110, for example, as registered in step 310
above. In step 504, application director 106 determines which
logical templates are used in the blueprint (e.g., to create
nodes 412) and retrieves cloud templates mapped to the logi-
cal templates, for example, as mapped in step 318 above, for
the selected deployment environment.

Additionally, the user selects a cloud network available
from cloud provider 110 for each logical network defined in
the blueprint. For example, when deploying a load balancer
node to a test environment, the user may select an internal
network for both sub-networks (e.g., NICs). When deploying
a load balancer node to a production environment, the user
may select an internal network for one load balancer NIC and
an external network for the other load balancer NIC. Cloud
provider 110 provides a listing of available network types that
may be mapped to logical networks of the blueprint, for
example, including dynamically allocated networks (e.g.,
DHCP), statically allocated networks (e.g., static IP pool),
direct connected (e.g., external) networks, routed networks,
and isolated (e.g., private, internal) networks.

In step 506, the user customizes blueprint 126 by specify-
ing deployment-specific configurations of the nodes and
application components. The user may provide a new prop-
erty value for a node or application component that overrides
or replaces a default value specified by a definition for the
property in catalog 130 or an application-specific value speci-
fied by blueprint 126. For example, a blueprint having an
Apache Tomcat application component might specify a JVM
heap size of 512 MB. However, a user may want to override
that application-specific setting to change the heap size to
1024 MB to suit a particularly large deployment in a produc-
tion environment. In another example, a user may override
node properties, such as memory allocation or number of
CPUs, which have been defined by catalog 130 to make a
more robust deployment. Similar to application-specific cus-
tomizations, the user may only customize node or application
component properties that have been designated as “overrid-
able at deployment” within the blueprint. The customized
deployment-specific property values are utilized during
execution and/or determination of deployment tasks,
described below.

In step 508, application director 106 determines a plurality
of'tasks to be executed to deploy each node of blueprint 126
and each application component executing thereon. For each
node in blueprint 126, application director 106 determines a
task that includes a provisioning request to cloud provider
110 to create a corresponding virtual machines or cluster of
virtual machines according to the mapped cloud template and
property values (e.g., number of CPUs, memory allocation)
specified by catalog 130, blueprint 126, and/or deployment
plan 128, in ascending order of priority. In the three-tiered
application example above, application director 106 deter-
mines a task to provision two virtual machines having Cen-
tOS 32-bit 5.6 installed (e.g., for database and load_balancer

30

35

40

45

50

55

60

65

14

nodes) and a cluster of virtual machines having CentOS
32-bit 5.6 installed (e.g., for app_server node).

For each application component in blueprint 126, applica-
tion director 106 determines one or more tasks that include
execution of action scripts corresponding to each application
lifecycle stage defined for the application component. For
example, for a load balancer application component, appli-
cation director 106 determines tasks corresponding to execu-
tion of an installation script (e.g. “INSTALL”), a configura-
tion script (e.g. “CONFIGURE”), and a launch script (e.g.
“START™). In another example, for an SQL script that initial-
izes a database (e.g., “init_db_script”), application director
106 determines a single task corresponding to execution of
the script (e.g., “INSTALL”).

In step 510, application director 106 determines one or
more deployment time dependences between the tasks
according to the application topology defined in blueprint
126. Dependencies between application components and/or
nodes defined in blueprint 126 may be used to determine an
order in which the application components should be
deployed. A dependency defined as “from” a first application
component “to” a second application component represents a
requirement that tasks for the first application component
cannot be performed until the tasks for the second application
component have been completed.

Dependencies between application components and/or
nodes can explicitly defined in blueprint 126 via insertion by
the user in steps 336 and 338 of FIG. 3B (e.g., between the
application component and load balancer in FIG. 4). A depen-
dency between application components may be defined
between application components in the same node (e.g.,
“intra-node” dependency) to represent that, at that node, tasks
for one application component are performed after tasks for
the other application component. Alternatively, dependencies
between application components may be defined between
application components in different nodes (e.g., “inter-node”
dependencies) such that tasks for an application component at
a first node are performed after tasks of an application com-
ponent at a second node have been completed. It is appreci-
ated that this may result in a pause in operations at the first
node until the tasks at the second node have been performed.

Additionally, dependencies between application compo-
nents and/or nodes can be implicitly defined in blueprint 126
via a nested or layered relationship between application com-
ponents. Tasks for an application component that is a “con-
tainer” for another application component are ordered within
deployment plan 128 to be performed before the tasks for the
other application component. For example, for a blueprint
126 having a code component (e.g., JAR web application)
executing on an application server (e.g., JBoss), a nested
relationship between the code component and application
server implicitly defines a dependency from the code compo-
nent to the application server. As such, tasks for the code
component may not be performed until tasks for the applica-
tion server have been completed. In the three-tiered applica-
tion example above, the database initialization script (e.g.,
“init_db_script”) is implicitly dependent on the database
(e.g., MySQL database) and may not be executed until tasks
associated with the database have been performed.

In step 512, application director 106 generates a deploy-
ment plan 128 for executing the tasks according to the depen-
dencies determined in step 510, and in turn, in step 514, the
user may review the generated deployment plan 128. Deploy-
ment plan 128 is generated as a step-wise execution plan
having tasks for deploying the application on a plurality of
virtual machines provided by cloud provider 110. The step-
wise execution plan may be organized by virtual machine

US 9,170,798 B2

15

according to which virtual machine each task is to be per-
formed on. In one particular implementation, deployment
plan 128 may be graphically illustrated to the user in a work-
flow view, for example, as shown in FIG. 6A.

FIG. 6 A shows an example user interface 600 for viewing
a deployment plan 128 generated according to an application
blueprint. User interface 600 includes a canvas 602 having a
plurality of nodes 604 representing virtual machines provi-
sioned in the deployment environment. Each node 604
includes a plurality of tasks 606 representing action scripts to
be executed on the virtual machine included therein. FIG. 6A
depicts the three-tiered application example described above
having an Apache load balancer, MySQL database, and JBoss
application server executing a web application (e.g.,
“bank_app™).

Deployment time dependencies that represent an order of
execution are depicted by solid directional lines 608 and
dashed directional lines 610. Accordingly, deployment plan
128 specifies that a task does not begin execution until a
preceding task, as indicated by directional lines 608, has been
completed. For example, a virtual machine (labeled as “data-
base™) executes action scripts for installing, configuring, and
starting a MySQL database service (scripts identified as
“MySQL-INSTALL,” “MySQL-CONFIGURE,” “MySQL-
START,” respectively). Because of the dependency implied
by the container-relationship between the MySQL database
and SQL script, the task for executing the “init_db_script”
SQL script (e.g., “init_db_script-INSTALL”) is placed after
the last task for deploying the MySQL database (e.g.,
“MySQL-START”) has been completed. Similarly, the tasks
for deploying the bank application (e.g., “Bank_App-IN-
STALL”) are placed after the last task for deploying the JBoss
application server.

Deployment plans 128 further specify that a task 606 may
wait for completion of a task in another virtual machine (e.g.,
inter-node dependency), as indicated by a dashed directional
line 610. In the three-tiered application example, deployment
plan 128 specifies that tasks for deploying the web application
(e.g., “bank_app-INSTALL”) does not begin execution until
the task for executing the database initialization script (e.g.,
“init_db_script-INSTALL”) has been completed.

Additionally, user interface 600 depicts nodes 604 that
represent a cluster of virtual machines in aggregate as a single
node 612, or alternatively, in an expanded view shown in F1G.
6B, renders each virtual machine in the cluster as separate
sub-nodes 614 having an own set of tasks to be performed. In
the three-tiered application example, the clustered applica-
tion server node (e.g. “app_server”) is depicted as having
sub-nodes 614 (e.g., identified as “app_server[0]” and
“app_server[1]”). Each sub-node 614 includes an additional
set of deployment time dependencies (depicted with direc-
tional dashed lines 616) from all tasks in a clustered node to
tasks in another node to represent that a task in all sub-nodes
614 must be completed before the task in the other node may
begin. For example, in the three-tiered application example,
deployment plan 128 indicates that the bank_app INSTALL
tasks in app_server[0] and app_server[1] nodes must both be
completed before INSTALL task for the load_balancer may
begin.

In an alternative embodiment shown in FIG. 6C, user inter-
face 600 depicts tasks 618 for requesting provision ofa virtual
machine for each node specified in blueprint 126 and as
according to a cloud template mapped to logical templates
specified in blueprint 126. For example, deployment plan 128
includes tasks 618 (e.g., “load_balancer-PROVISION™) to
provision virtual computing resources according to a cloud
template (e.g., “CentOS32 5.6”). As shown in FIG. 6C,

10

15

20

25

30

35

40

45

50

55

60

65

16

deployment plan 128 specifies that provisioning tasks 618 for
virtual machines are performed before deployment tasks for
application components (e.g., MySQL, JBoss Application
server, etc.).

Execution of Deployment Plan

Having generated a deployment plan 128, deployment
director 124 of application director 106 communicates with
cloud provider 110 to execute deployment plan 128 within a
deployment environment 112.

FIG. 7 depicts an example cloud computing platform pro-
vider 110 with which one embodiment of the present inven-
tion may be utilized. As described above, enterprise 100
desires to deploy on a web application (or any other type of
application) in a deployment environment 112 provided by
cloud provider 110. For example, cloud provider 110 may
utilize a cloud computing environment 702 accessible, for
example, via REST (Representational State Transfer) APIs
(Application Programming Interface) or any other client-
server communication protocol, to provide virtual computing
resources on which enterprise 100 desires to deploy its web
application.

Cloud provider 110 utilizes an infrastructure platform 708
upon which a cloud computing environment 702 may be
executed. In the particular embodiment of FIG. 7, infrastruc-
ture platform 708 comprises hardware resources 710, such as
servers 712, to 712,, and one or more storage array networks
(SAN), suchas SAN 714, which are configured in a manner to
provide a virtualization environment 716 that supports the
execution of a plurality of virtual machines across servers
712, to 712,. As further detailed below, these virtual
machines provide the virtual computing resources (e.g., com-
pute, networking, and storage resources) that make up cloud
computing environment 702.

Virtualization environment 716 of FIG. 7 includes an
orchestration component 718 (e.g., implemented as a process
running in a virtual machine in one embodiment) that pro-
vides infrastructure resources to cloud computing environ-
ment 702 responsive to provisioning requests. For example, if
deployment director 124 required a specified number of vir-
tual machines to deploy a web applications or to modify (e.g.,
scale) a currently running web application to support peak
demands, responsive to a request from deployment director
124, orchestration component 718 can initiate and manage
the instantiation of virtual machines (e.g., VMs 114, to 114,)
on servers 712, to 712, to support such requests. In one
embodiment, orchestration component 718 instantiates vir-
tual machines according to a requested cloud template that
defines a virtual machine having specified virtual computing
resources (e.g., compute, networking, storage resources).
Further, orchestration component 718 monitors the infra-
structure resource consumption levels and requirements of
cloud computing environment 702 (e.g., by monitoring com-
munications routed through addressing and discovery layer
720 as further detailed below) and provides additional infra-
structure resources to cloud computing environment 702 as
needed or desired. In one example, virtualization environ-
ment 716 may be implemented by running VMware ESX™
based hypervisor technologies on servers 712, to 712, pro-
vided by VMware, Inc. of Palo Alto, Calif. (although it should
be recognized that any other virtualization technologies,
including Xen® and Microsoft Hyper-V virtualization tech-
nologies may be utilized consistent with the teachings
herein).

Cloud computing environment includes a cloud director
722 (e.g., run in one or more virtual machines) that manages

US 9,170,798 B2

17

allocation of virtual computing resources to application
director 106 for deploying applications. Cloud director 722
authenticates connection attempts from application director
106 using received cloud provider credentials, for example,
as described above. Cloud director 722 maintains and pub-
lishes a catalog of available cloud templates that represent
virtual machines that may be provisioned from cloud com-
puting environment 702. Cloud director 722 receives provi-
sioning requests submitted to cloud provider 110 and may
propagates such requests to orchestration component 718 to
instantiate the requested virtual machines (e.g., VMs 114, to
114,). In one embodiment, cloud director 722 receives pro-
visioning requests for cloud templates that have been mapped
to a logical template in application blueprints 126.

In the embodiment of FIG. 7, cloud computing environ-
ment 702 supports a deployment environment 112 having a
plurality of virtual machines (identifiedasVMs 114, to 114,)
instantiated to host deployed web applications. For example,
the deployment by enterprise 100 of a web application having
application components 724 results in the hosting of applica-
tion components 724 in VMs 114, to 114,, of deployment
environment 112 at cloud computing platform provider 110.
A VM (e.g., VM 114,) may include a pre-installed bootstrap
script that, upon first boot, retrieves a deployment agent 726
(e.g., packaged as a JAR file) from deployment director 124.
Alternatively, deployment agent 726 may be pre-installed on
VM 114, via inclusion in a cloud template defined by cloud
director 722. Deployment agent 726 running on each VM
receives a local deployment plan 728 from deployment server
and executes local deployment plan 728 in coordination with
deployment director 124.

Addressing and discovery layer 720 provides a common
interface through which components of cloud computing
environment 702 (e.g., cloud director 722, and VMs 114, to
114, ,in deployment environment 112) can communicate and
receive notifications. For example, deployment director 124
of application director 106 may communicate through
addressing and discovery layer 720 to broadcast local provi-
sioning plans during deployment of web applications in cloud
computing environment 702. Similarly, VM 114, may broad-
casta notification through addressing and discovery layer 720
to poll for permission to execute of a task from a local provi-
sioning plan and to indicate successful execution of a task
from a local provisioning plan. In one embodiment, address-
ing and discovery layer 720 is implemented as a message
brokering service (e.g., running in one or more virtual
machines) that defines a common protocol and message for-
mat through which components of cloud computing environ-
ment 702 can exchange messages and broadcast notifications
and other information. In such an embodiment, the compo-
nents of cloud computing environment 702 establish a con-
nection with the message brokering service (e.g., also some-
times referred to as “subscribing” to the message brokering
service), for example, through known authentication tech-
niques (e.g., passwords, etc.) and, once connected to the
message brokering service, can provide, receive and request
messages, notifications and other similar information to and
from other components that have also subscribed to the mes-
sage brokering system. One example of a message brokering
service that may be used in an embodiment is RabbitMQ™
which is based upon the AMPQ (Advanced Message Queuing
Protocol) open protocol standard. It should be recognized,
however, that alternative interfaces and communication
schemes may be implemented for addressing and discovery
layer 720 other than such a message brokering service.

Deployment director 124 (e.g., run in one or more virtual
machines) orchestrates execution of a deployment plan 128

10

15

20

25

30

40

45

50

55

60

65

18

for an application in coordination with virtual machines (e.g.,
VMs 114, to 114,) participating in the deployment. Deploy-
ment director 124 separates deployment plan 128 into local
deployment plans 728 for each node that are executed by
deployment agent 726 on each node. Deployment director
124 maintains a central state of the deployment process that
understands the deployment time dependencies between
tasks to be performed across nodes (e.g., VMs 114, to 114,)
in a specific order. Deployment director 124 broadcasts trans-
mits notification to deployment agent 726 on each node to
indicate resolution of deployment time dependencies
between tasks in local deployment plans 728. Additionally,
deployment director 124 monitors the status of deployment
agents 726 and may perform a heartbeat procedure when a
deployment agent 726 becomes unresponsive.

Once deployment director 124 of application director 106
successfully orchestrates the deployment of web application
inVMs 114, to 114, an end user 750 can access the deployed
application, for example, through a web browser or any other
appropriate client application residing on a computer laptop
or other computer terminal. Router 730 (e.g., run in one or
more virtual machines) receives the web browser’s access
request (e.g., a uniform resource locator or URL) and routes
the request to deployment environment 112 which hosts the
deployed application. More generally, router 730 maintains
mappings in internal routing tables between URLs and
deployed applications in order to properly route URL
requests from customers to the appropriate deployment envi-
ronments 112 hosting the requested web applications (as well
as maintain load balancing among web application instances,
etc.). These mappings are received by router 730 through
address and discovery layer 720 when a cloud director 722
successfully provisions virtual computing resources for host-
ing an application and broadcasts routing information (e.g.,
hostname, network address information, port number, etc.)
for the provisioned VMs through addressing and discovery
layer 720.

FIG. 8A is a flow diagram that illustrates steps for coordi-
nating communication between deployment director 124 and
deployment agents 726 executing on VMs (e.g., VMs 114, to
114,) in a cloud computing environment. It should be rec-
ognized that, even though the steps of FIGS. 8A-C are
described in conjunction with the systems of FIG. 1 and FIG.
7, any system configured to perform the method steps, in any
order, is within the scope of embodiments of the invention.

In step 802, deployment director 124 requests cloud direc-
tor 722 for provision of virtual computing resources based on
deployment plan 128. The provisioning request allows for
creation of virtual machines according to one or more cloud
templates published as available by cloud provider 110. In
step 804, cloud director 722 receives the request and creates
one or more VMs (e.g., VMs 114, to 114,,) according to a
cloud template requested by deployment director 124.

VM 114, proceeds to establish communication with
deployment director 124 for coordinating deployment in the
cloud computing environment. In one embodiment, in step
806, VM 114, boots and launches a bootstrap script that
initializes VM 114, to support communication with deploy-
ment director 124. The bootstrap script provides information
for an initial communication with deployment director 124,
for example, a resource location (e.g., URL) for retrieving
deployment agent 726 from deployment director 124. In step
808, VM 114, requests an application package containing
deployment agent 726 from deployment director 124. In an
alternative embodiment, deployment agent 726 may be pre-
installed on VM 114 via a customized cloud template.

US 9,170,798 B2

19

In step 810, responsive to the request from VM 114,,
deployment director 124 transmits the requested package that
includes deployment agent 726 (e.g., a JAR file containing
deployment agent 726) in addition to deployment agent con-
figurations to VM 114, . The deployment agent configurations
are specific to VM 114 and specify how deployment agent
726 executing on VM 114 may communicate with deploy-
ment director 124 through a messaging system, such as
addressing and discovery layer 720. In one example, deploy-
ment agent configurations may include network address for
addressing and discovery layer 720 and a unique address
(e.g., queue name) that uniquely identifies communications
intended for deployment agent 726. Deployment agent con-
figurations may include a one-time password (e.g., temporary
key) generated by deployment director 124 and associated
with the specific VM 114 (e.g., via unique address) to enable
a secure method by which deployment agent 726 can initially
authenticate itself to deployment director 124.

In step 812, VM 114, receives the deployment agent pack-
age and verifies the integrity and/or authenticity of the
deployment package, for example, using a fingerprint or
checksum value (e.g., MDS5 hash value) that is provided with
deployment agent configurations in step 810. VM 114,
executes the deployment agent package to launch deployment
agent 726 utilizing received deployment agent configura-
tions. Deployment agent 726 proceeds to authenticate itself
with deployment director 124 to establish a secure method of
communication, for example, by requesting a digital certifi-
cate that allows encrypted communications. In step 814,
deployment agent 726 executing on VM 114, transmits an
initial authentication request to deployment director 124
using the unique address (e.g., queue name) and one-time
password provided from the deployment agent configurations
received in step 812.

In step 816, deployment director 124 authenticates VM
114, based on the received the unique address (e.g., queue
name) and one-time password. Responsive to authenticating
deployment agent 726 executing on VM 114, in step 818,
deployment director 124 generates a digital certificate (or any
suitable cryptographic key mechanism) specific to the
requesting deployment agent 726 that is used for authoriza-
tion and authentication of future communications with
deployment agent 726. For example, deployment director 124
may generate a digital certificate that incorporates the unique
address into the digital certificate, such as part of the common
name (CN) of the digital certificate. Deployment director 124
provides the certificate to deployment agent 726, which in
turn, receives and imports the digital certificate into a key-
store, in step 820. It is understood that foregoing communi-
cations with deployment director 124 may utilize the digital
certificate for encrypted and secure communications. Having
authenticated itself with deployment director 124, deploy-
ment agent 726 executing on VM 114, is deemed “boot-
strapped” and is now ready for use in a deployment process
for an application. In step 822, deployment agent 726 broad-
casts its available status via secure communication with
addressing and discovery layer 720. In step 824, deployment
director 124 receives status messages from VMs (e.g., VM
114, to 114,,) via addressing and discovery layer 720 that
indicate that provisioned VMs are ready to host application
components of the application being deployed. Operations of
FIG. 8A continue to step 826, shown in FIG. 8B.

FIG. 8B is a flow diagram that illustrates steps for execut-
ing deployment plan 128 to deploy an application on VMs in
acloud computing environment. In the embodiment shown in
FIG. 8B, deployment plan 128 is executed by deployment
agents 726 running on VMs 114, to 114, ,in coordination with

10

15

20

25

30

35

40

45

50

55

60

65

20

deployment director 124. In step 826, based on deployment
plan 128, deployment director 124 generates a local deploy-
ment plan 728 for each VM (e.g., VMs 114, to 114,) partici-
pating in deployment is responsible for executing. Rather
than giving a global view via deployment plan 128 to each
VM (e.g., VMs 114, to 114,,), orchestration of the deploy-
ment process is centralized at deployment director 124 by
including in each local deployment plan 728 only those tasks
that the corresponding VM executes. In one embodiment,
deployment director 124 separates deployment plan 128 by
node (e.g., nodes 604 or sub-nodes 614 of FIG. 6A) and into
sets of tasks to be performed in a specified order by each
corresponding VM (e.g., VMs 114, to 114,). For example, in
the three-tiered application example, deployment director
124 generates a local deployment plan 728 for a VM corre-
sponding to the load_balancer node that includes an installa-
tion task, a configuration task, and a starting task for Apache
web service (e.g., “Apache_[LB-INSTALL,” “Apache_L.B-
CONFIGURE,” “Apache_LLB-START”). In step 828, local
deployment plans 728 are transmitted by deployment director
124 to each VM via addressing and discovery layer 720, and
are received by deployment agents 726 running on VMs (e.g.,
VMs 114, to 114,) in step 830.

In step 832, deployment agent 726 processes local deploy-
ment plan 728 to determine a first task to be performed
according to an execution order specified by local deploy-
ment plan 728. Deployment agent 726 transmits a task execu-
tion request to deployment director 124 via addressing and
discovery layer 720 to determine whether deployment agent
726 can proceed with execution of the first task. Deployment
agent 726 proceeds to wait in step 834 until receipt of autho-
rization to proceed with execution of the first task in local
deployment plan 728.

In step 836, deployment director 124 receives an execution
request for a task to be executed by a deployment agent 726
hosted on a VM (e.g., VMs 114, to 114,,). In step 838,
deployment director 124 determines if there any uncompleted
tasks that the requested task depends on according to deploy-
ment plan 128. As described above, deployment director 124
maintains a centralized state of the deployment process that
includes a status (e.g., incomplete, complete, in progress) for
all tasks to be executed on all VMs during deployment. Fur-
ther deployment director 124 tracks an execution order pro-
vided by deployment plan 128 comprised of deployment time
dependencies between tasks within the same node and/or
between different nodes. Accordingly, deployment director
124 utilizes deployment plan 128 to determine whether there
are any tasks upon which the task requesting execution
depends, and if so, whether these tasks have been completed
yet. The existence of any uncompleted tasks from which the
requested task depends blocks execution of the requested
tasks.

As such, in step 840, responsive to determining that there
are indeed uncompleted tasks upon which the requested task
depends, deployment director 124 may return to step 838 to
repeatedly check for completion of the tasks upon which the
requested task depends. Deployment director 124 may deter-
mine that the dependent tasks have been completed using a
variety of communication, messaging, and notification
mechanisms, such as, a polling mechanism to periodically
check for completion of the dependent tasks. In another
example, deployment director 124 may register the requested
task with a callback mechanism that maintains a list of which
tasks are currently being blocked by which tasks and triggers
notification when tasks have been completed.

Responsive to determining that there are no uncompleted
tasks upon which the requested task depends, in step 842,

US 9,170,798 B2

21

deployment director 124 evaluates current values of proper-
ties specified for the VM according to blueprint 126. As
described above, particular properties may be specified for
application components to provide configuration values dur-
ing execution of tasks for the application components (e.g.,
installation, configuration, start-up). Some property values
may beutilized across multiple application components in the
deployed application. For example, a web application may be
configured to access a database server using database user
credentials (e.g., username, password) specified by a property
value (e.g., $database.username) defined in blueprint 126.
However, certain property values are determined dynami-
cally during deployment and cannot be made available ini-
tially, for example, in step 828, when local deployment plans
728 are transmitted. For example, a database password may
be randomly generated and is not determined until the data-
base server has been initialized. As such, deployment director
124 centrally manages property values for all application
components and all nodes and distributes property values to
deployment agents 726 throughout the deployment stage. For
example, the database password that is dynamically gener-
ated at the database server may be transmitted to deployment
director 124 that, in turn, provides the database password to
the web application as needed. In one embodiment, deploy-
ment director 124 generates a set of property values specific
to properties specified for a given node.

In step 844, deployment director 124 transmits authoriza-
tion to execute the requested task as well as a set of property
values for the VM via addressing and discovery layer 720. In
step 846, deployment agent 726 receives the execution autho-
rization and property values. While embodiments of the
invention describe the authorization to execute the requested
task as an express message passed to deployment agents 726,
it should be recognized that a variety of communication,
messaging, and notification mechanisms, including implied
notifications, may be utilized. One example of an implied
notification is the establishment of a communication channel
(e.g., socket) with deployment director 124. To implicitly
notify that deployment agent 726 may proceed with executing
a task, deployment director 124 may close or shutdown the
communication channel to signal authorization to execute. In
step 848, deployment agent 726 executes the task for an
application component utilizing the received property values.
In one embodiment, the received property values are embod-
ied in a script that, when executed, sets values for environ-
mental variables in an execution environment that executes
the task.

In step 850, deployment agent 726 transmits a task status
that indicates successful or unsuccessful completion of the
task via addressing and discovery layer 720. In one embodi-
ment, deployment agent 726 provides status output, log
records, and other output (e.g., verbose text output from a
UNIX shell) resultant from execution of the task. Deploy-
ment agent 726 further transmits an updated set of property
values post-execution of the task to propagate any updated
property values to other deployment agents 726 hosted on
VMs. In step 852, deployment director 124 receives task
status and updated property values and updates the central
state of the deployment process to indicate the completion of
a task by deployment agent 726 and to reflect the updated
property values. In one embodiment, deployment director
124 generates deployment metadata to provide status of
deployment, for example, by recording task start and end
times for each task executed. Task start time may be tolled
upon transmission of authorization to execute a requested

40

45

22

tasks (e.g., at step 844); task end times may be tolled upon
receipt of a task status from deployment agent 726 (e.g., at
step 850).

In step 854, deployment agent 726 determines whether the
executed task is the last task in local deployment plan 728,
and if so, terminates execution. Responsive to determining
that there are additional tasks to be performed in local deploy-
ment plan 728, deployment agent 726 returns to step 832 and
determines a next task in local deployment plan 728 to be
performed.

FIG. 8C is a flow diagram that illustrates alternative steps
for executing deployment plan 128 to deploy an application
on VMs in a cloud computing environment. Deployment
director 124 may utilize a heartbeat mechanism to proactively
monitor deployment agents 726 in deployment environment
112. In one embodiment, the heartbeat mechanism allows
deployment director 124 to detect failure of deployment
agents 726 (e.g., due to host failure, networking failure, etc.).
As shown in FIG. 8C, after transmitting execution authoriza-
tion in step 844, deployment director 124 may initiate a node
task timer, in step 860, which defines a “timeout” period for
deployment agent 726. The node task timer is configured as a
maximum amount of time before deployment agent 726 is
deemed “timed out” and is checked for failure. In step 862,
upon expiry of the node task timer, deployment director 124
transmits a heartbeat message to the “timed out” node via
addressing and discovery layer 720. The heartbeat message
may request a response with agent status and tasks within a
specified response period (e.g., within 1 minute of the heart-
beat).

Meanwhile, as discussed above, deployment agent 726
hosted on VM 114 receives authorization to execute a
requested task in step 846 and proceeds to do so in step 848.
It is appreciated that a significant amount of time, that may
exceed the timeout period of the node task timer, may be
needed to complete execution of a task. In step 868, during
execution of a task, deployment agent 726 may receive a
heartbeat message from deployment director 124 that
requests deployment agent 726 to report status within a speci-
fied response period. In step 872, deployment agent 726 trans-
mits a heartbeat response to deployment director 124 to indi-
cate deployment agent 726 is alive and active and that the task
is still being executed.

In step 864, deployment director 124 determines whether a
heartbeat response has been received within the specified
response period. Responsive to determining that no heartbeat
response has been received within the specified response
period, in step 866, deployment director 124 deems deploy-
ment agent 726 to be “dead” and updates the central state of
the deployment as having failed. In step 870, responsive to
determining that a heartbeat response has been received
within the specified response period, deployment director
124 restarts the node task timer, or alternatively, modifies the
node task timer to extend the timeout period, and returns to
step 860. It is noted that deployment director 124 may inter-
rupt any of the steps discussed above in FIG. 8C upon receipt
of'a completed task status and updated property values (e.g.,
in step 852 in FIG. 8B) from deployment agent 726.

FIG. 9 depicts provisioned virtual machines in a cloud
computing platform for hosting application components 724.
Such virtual machines are provided to a cloud computing
platform, for example, by virtualization environment 716, as
previously discussed in the context of FIG. 7. Container VM
114, ishosted onone of servers 712, to 712, (e.g., server 712,
as depicted in FIG. 9) comprising a server grade hardware
platform 902 such as an x86 architecture platform. Such a
hardware platform may include a local storage unit 904, such

US 9,170,798 B2

23

as a hard drive, network adapter (NIC 906), system memory
908, processor 910 and other I/0 devices such as, for example
and without limitation, a mouse and keyboard (not shown in
FIG. 9).

A virtualization software layer, also referred to hereinafter
as hypervisor 912, is installed on top of hardware platform
902. Hypervisor 912 supports virtual machine execution
space 914 within which multiple container VMs for hosting
application components 724 of an application may be con-
currently instantiated and executed. As shown, virtual
machine execution space 914 supports VMs 114, to 114 _. For
each of provisioned VMs 114, to 114, hypervisor 912 man-
ages a corresponding virtual hardware platform (i.e., virtual
hardware platforms 916,-916,) that includes emulated hard-
ware such as virtual hard drive 918, virtual NIC 920, virtual
CPU 922,, and virtual RAM 924, for VM 114,. For example,
virtual hardware platform 916, may function as an equivalent
of a standard x86 hardware architecture such that any x86
supported operating system, e.g., Microsoft Windows®,
Linux®, Solaris® x86, NetWare, FreeBSD, etc., may be
installed as guest operating system 926 to execute application
component 724 for VM 114, although it should be recog-
nized that, in alternative, embodiments, each of container
VMs 114, to 114 may support the execution of multiple
application components 724 rather than a single application
component. Hypervisor 912 is responsible for transforming
1/0 requests from guest operating system 926 to virtual hard-
ware platform 916, into corresponding requests to hardware
platform 902. In the embodiment of FIG. 9, guest operating
system 926 of container VM 114, supports the execution of a
deployment agent 726, which is a process or daemon that
communicates (e.g., via addressing and discovery layer 720)
with deployment director 124 to receive local deployment
plan 728 and execute scripts representing tasks of local
deployment plan 728. Execution of the script may include
retrieving, unpacking, installing, and configuring application
component packages. In one embodiment, the application
component package comprises a plurality of files, similar to
those in a WAR file, organized into a tape archive file or a “tar”
file (also referred to as a tarball), and that may be retrieved via
download from a Git repository, package manager, or other
similar application component resource. Deployment agent
726 is configured to communicate with deployment director
124 to provide execution status for tasks that have been suc-
cessfully executed on VM 114, or upon receipt of a heartbeat
message. Deployment agent 726 is automatically launched
upon the instantiation of a VM in certain embodiments.

It should be recognized that the various terms, layers and
categorizations used to describe the virtualization compo-
nents in FIG. 9 may be referred to differently without depart-
ing from their functionality or the spirit or scope of the inven-
tion. For example, virtual hardware platforms 916,-916, may
be considered to be part of virtual machine monitors (VMM)
934,-934 which implement the virtual system support
needed to coordinate operations between hypervisor 912 and
their respective container VMs. Alternatively, virtual hard-
ware platforms 916,-916, may also be considered to be sepa-
rate from VMMs 934,-934_, and VMMs 934,-934, may be
considered to be separate from hypervisor 912. One example
of hypervisor 912 that may be used is included as a compo-
nent of VMware’s ESX™ product, which is commercially
available from VMware, Inc. It should further be recognized
that other virtualized computer system architectures may be
used consistent with the teachings herein, such as hosted
virtual machine systems, where the hypervisor is designed to
run on top of a host operating system. It should further be
recognized, as previously discussed in the context of FIG. 7,

5

10

15

20

25

30

35

40

45

50

55

60

65

24

that virtualization environment 716 which provides VMs,
such as those in FIG. 9, may be supported by hardware
resources 710 that comprise any number of physical comput-
ers and data storage systems in one or more data centers
connected by networking, with each of the physical comput-
ers hosting one or more of VMs 114, to 114,,, and possibly
other VMs that run one or more processes carrying out the
functions of other components of cloud computing environ-
ment 702, such as router 730, cloud director 722, address and
discovery layer 720 and the like. As discussed in the context
of FI1G. 9 with respect to container VMs, each VM supporting
such other components is a virtual computer system that may
have a guest operating system and one or more guest appli-
cations that can include any of the above processes.

Customization of Deployment Plan

Prior to execution of deployment plan 128, a user (e.g.,
developer 102 or administrator 104) may review modify
deployment plan 128 to include additional custom tasks to be
executed on nodes participating in deployment and/or to
modify deployment time dependencies between tasks of
deployment plan 128.

FIG. 10 is a flow diagram that illustrates steps for modify-
ing a deployment plan 128 generated from an application
blueprint 126 for an application 108 to be deployed. It should
be recognized that, even though the steps are described in
conjunction with the systems of FIGS. 1 and 7, any system
configured to perform the method steps, in any order, is within
the scope of embodiments of the invention.

Continuing from step 514, where a user (e.g., developer
102 or administrator 104) reviewed deployment plan 128
generated according to application blueprint 126, in step
1002, the user specifies one or more custom tasks to be
performed by a node during deployment. In one embodiment,
the user selects a custom task defined in catalog 130 for
insertion at a specified location step within an execution
defined by deployment plan 128. The user may modify the
custom task to add, remove, or change scripting logic com-
prised by the custom task. Alternatively, the user creates a
custom task from a blank template for insert at a specified
location step within an execution defined by deployment plan
128. In step 1004, responsive to user input, application direc-
tor modifies deployment plan 128 to insert custom tasks at a
specified location within execution order of deployment plan
128. For example, custom tasks may be added before and/or
after installation, configuration, and startup phases of each
application component in deployment plan 128. In one imple-
mentation, a graphical user interface is provided for custom-
izing a deployment plan 128 generated from a blueprint 126,
an example of which is depicted in FIG. 11.

FIG. 11 shows an example user interface 1100 for modi-
fying a deployment plan 128 generated according to an appli-
cation blueprint 126. User interface 1100 is configured simi-
larly to canvas 602 to provide a graphical workflow view of
deployment plan 128. The user may specify a custom task
1104 for insertion, for example, by pressing a task tool button
1106. Custom task 1104 may be inserted, moved, or placed at
any “location” preceding a task 606, following a task 606, or
located between tasks 606. For example, deployment plan
128 depicted in FIG. 11 includes a custom task 1104 inserted
before action scripts for MySQL (e.g., before the task
“MySQL-INSTALL”) to represent that the custom take 1104
is to be executed prior to deployment of the MySQL service.
None, one, or multiple custom tasks 1104 may be inserted at
a single location. In the embodiment of FIG. 11, the user may
drag and drop one or more custom tasks 1104 at any of a

US 9,170,798 B2

25

plurality of locations, depicted as pushpin locations 1108, to
“pin” custom task 1104 at the specified location. For example,
pushpin locations 1108 are shown between tasks for installa-
tion and configuration of MySQL (e.g., “MySQL-INSTALL”
and “MySQL-CONFIGURE”), between tasks for configura-
tion and startup of MySQL (e.g., “MySQL-START”),
between tasks for startup for MySQL and an initialization
script (e.g., “init_db_script-INSTALL”), and after the initial-
ization script. Each pushpin location 1108 represents an
available slot at which a custom task 1104 may be placed. For
sake of illustration, pushpin locations 1108 for other nodes
(e.g., load_balancer and app_server nodes) have been omit-
ted.

In one embodiment, rather than having a task (e.g., task
606) assigned to a particular node (e.g., “database” node), the
user may specify one or more custom tasks 1104 as “external
tasks” to be executed independently of any node participating
in deployment of application 108. External tasks may be
executed by application director 106, or alternatively, by a
separate virtual machine specifically provisioned for execu-
tion of external tasks. Deployment plan 128 specifies that, by
default, external tasks are executed prior to tasks assigned to
each node unless deployment time dependencies is inserted
from an external task to a task assigned to a node, as described
in detail later.

FIG. 12 shows an example user interface 1200 having
external tasks defined for a deployment plan 128. User inter-
face 1200 includes a task panel 1202 (identified as “External
Tasks” panel) having a plurality of locations 1204 where a
custom task may be inserted. For example, a custom task
1206 (labeled as “yum_repos_config”) may be specified as an
external task that configures a package repository (e.g., yum)
prior to deployment of JBoss Application Server, MySQL, or
Apache web service to nodes participating in the deployment.

Referring back to FIG. 10, in step 1006, the user selects one
or more tasks (e.g., task 606 or custom task 1104) to modify
deployment time dependencies (e.g., directional lines 608,
610) between the tasks. In step 1008, application director 106
modifies deployment plan 128 to change the execution order
of the selected tasks. For example, in the implementation
shown in FIG. 11, the user may select a task 606 located
within a node 604 and drag the selected task to a new location
(e.g., location 1108) within a node 604 to re-order tasks for a
given node 604. In one embodiment, the user inserts a new
deployment time dependency (e.g., dashed directional line
610) between an external task 1206 and a task 606 executing
within a node 604 to represent that task 606 executing within
anode should be completed prior to execution of external task
1206.

Application director 106 enforces restraints on customiza-
tions to deployment plan 128 according to the topology
defined by blueprint 126. Application director 106 may dis-
allow re-ordering of tasks if blueprint 126 prescribes a
required deployment order for the tasks. For example, if a
blueprint 126 defines a dependency from a MySQL service to
an Apache service hosted on the same node, application direc-
tor 106 may prevent the user from manually re-ordering tasks
for the Apache service to be executed after tasks for the
MySQL service. Accordingly, customizations to deployment
plan 128 may not violate application component dependen-
cies defined in blueprint 126.

In some cases, the user may wish to re-visit and modify
blueprint 126, for example, if the application architecture has
changed during development of the application, or if a cus-
tomization to deployment plan 128 has been disallowed based
onblueprint 126. In step 1010, the user modifies blueprint 126
to add or remove an application component within a node, to

10

15

20

25

30

35

40

45

50

55

60

65

26

add or remove a dependency between application compo-
nents, and perform other changes. In step 1012, responsive to
user input, application director 106 saves the changes to blue-
print 126 and then performs corresponding changes to
deployment plan 128 to maintain consistency between the
blueprint 126 and deployment plan 128.

In one embodiment, application director 106 performs
changes to deployment plan 128 corresponding to changes in
blueprint 126 while maintaining customizations previously
made on top of the original deployment plan, for example,
insertion of custom tasks 1104. Application director 106
anchors the customizations (e.g., custom tasks 1104) to adja-
cent tasks that represent application lifecycle phases for an
application component (e.g., installation, configuration, and
startup). When dependencies between application compo-
nents are changed in blueprint 126, and thereby results in
changes to deployment plan 128 that move tasks for an appli-
cation component, custom tasks 1104 surrounding those
tasks for the application component are moved along there-
with. When an application component is deleted from blue-
print 126, thereby resulting in removal of tasks that represent
application lifecycle phases for the deleted application com-
ponent (e.g., installation, configuration, startup) from deploy-
ment plan 128, custom tasks 1104 surrounding the removed
tasks are anchored instead to a next application component in
a chain of deployment time dependencies (e.g., as depicted by
directional lines 608). When an application component is
added to blueprint 126, the addition of tasks that represent
application lifecycle phases for the added application com-
ponent (e.g., installation, configuration, and startup) to
deployment plan 128 should not the customizations or place-
ment of custom tasks 1104 around application components
originally found in blueprint 126.

In step 1014, application director 106 detects any errors
caused by changes that were made to deployment plan 128 to
correspond to changes to blueprint 126. For example, appli-
cation director 106 may detect an error or issue if a custom
task 1104 was anchored next to a now-deleted application
component or referenced a property specified for a now-
deleted application component. In step 1016, responsive to
detecting no errors, application director 106 provides a status
message to the user that indicates successful generation of
modified deployment plan 128. Alternatively, in step 1018,
responsive to detecting an error, or issue, in maintaining
customizations to deployment plan 128, application director
106 generates an alert message that indicates an error was
caused during modification of deployment plan 128. The alert
message may be shown locally to custom task 1104 that is the
subject of the error (e.g., “Warning: this task has been moved
due to changes in the blueprint.”). In step 1020, the user
reviews the modified deployment plan 128 and subject to
their approval, may proceed with execution of deployment
plan 128, as described above.

While embodiments disclosed herein are discussed with
regards to a deployment operation, operations for managing
existing deployments may be performed utilizing techniques
described herein. For example, an embodiment may be used
to: re-deploy an already deployed application by updating
application-specific code (e.g., going from version 1.0 to
version 1.1); upgrade an already deployed application to
upgrade the software services (e.g., middleware) of the appli-
cation, such as updating to the latest version of Apache;
backup a deployed application based on knowledge of an
application’s data storage (e.g., database storage, reposito-
ries, etc.) from the blueprint; and patch a deployed application
to allow for smaller binary updates to libraries, services, or
configurations for security and other reasons.

US 9,170,798 B2

27

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities usu-
ally, though not necessarily, these quantities may take the
form of electrical or magnetic signals where they, or repre-
sentations of them, are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system computer
readable media may be based on any existing or subsequently
developed technology for embodying computer programs in
a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims. For
example, while embodiments herein have referred to certain
methods for establishing communication between deploy-
ment director 124 and a VM 114 such as via bootstrap script,
it should be recognized that any authentication mechanism
may be utilized in alternative embodiments, such as pre-
shared keys, encrypted key exchange, digest access authen-
tication, etc. In addition, while embodiments herein have
referred to certain mechanisms for communication, such as
via addressing and discovery layer 720, between components
of'the described system (e.g., deployment director 124, VMs
114), it should be recognized that any system for messaging,
notification, and other communications, such as polling, call-
backs, pull requests (e.g., POST requests, REST APIs), mes-
sage brokering, etc., may be utilized in alternative embodi-
ments. Accordingly, the described embodiments are to be
considered as illustrative and not restrictive, and the scope of
the claims is not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims. In

20

30

40

45

55

28

the claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo-
nents in exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).

We claim:

1. A method of moditfying a deployment plan having tasks
that are performed to deploy an application having one or
more application components executing on a plurality of vir-
tual computing resources, the method comprising the steps
of:

receiving, by a processor, a first script and a first placement

location for the first script in a sequence of tasks that are
performed to deploy the one or more application com-
ponents;

generating, by the processor, a deployment plan that

includes the first script for execution at the first place-
ment location according to a topology of the plurality of
virtual computing resources and the one or more appli-
cation components executing thereon;

determining, by the processor, a change to the topology of

the plurality of virtual computing resources and the one
or more application components from which the deploy-
ment plan is generated; and

generating, by the processor, a corresponding change to the

deployment plan while preserving the first script at the
first placement location in the sequence of tasks.

2. The method of claim 1, wherein the step of receiving the
first script further comprises:

selecting the first script from a library of user-defined

scripts; and

receiving modifications to the selected first script compris-

ing at least one reference to a configuration property
defined for one of the one or more application compo-
nents.

3. The method of claim 1, wherein the step of receiving the
first script comprises:

receiving an input through a graphical user interface that

implements drag-and-drop functionality in a region
showing the sequence oftasks as a plurality of connected
icons, wherein the input identifies the first script and
indicates the first placement location for the first script.

4. The method of claim 3, further comprising the step of:

receiving another input through the graphical user inter-

face to reorder the sequence of tasks, wherein the
deployment plan is generated to include execution of the
sequence of tasks as reordered.

5. The method of claim 1, wherein the change to the topol-
ogy is a deletion of one of the one or more application com-
ponents, and wherein the received first script is anchored to a
task that is performed to deploy another one of the one or
more application components.

6. The method of claim 1, wherein the change to the topol-
ogy is a change in a dependency from a first application
component to a second application component, and wherein
the received first script is anchored to the first application

US 9,170,798 B2

29

component such that the received first script reorders along
with the sequence of tasks for deploying the first application
component.
7. The method of claim 1, further comprising the step of:
receiving a second script and a second placement location
for the second script in a sequence of tasks that are
performed external to and not in conjunction with
deploying any of the one or more application compo-
nents of the application, wherein the deployment plan is
generated to include execution of the second script at the
second placement location.
8. A non-transitory computer-readable storage medium
storing instructions that, when executed in a computing
device, modify a deployment plan having tasks that are per-
formed to deploy an application having one or more applica-
tion components executing on a plurality of virtual computing
resources, by performing the steps of:
receiving a first script and a first placement location for the
first script in a sequence of tasks that are performed to
deploy the one or more application components;

generating a deployment plan that includes the first script
for execution at the first placement location according to
a topology of the plurality of virtual computing
resources and the one or more application components
executing thereon;

determining a change to the topology of the plurality of

virtual computing resources and the one or more appli-
cation components from which the deployment plan is
generated; and

generating a corresponding change to the deployment plan

while preserving the first script at the first placement
location in the sequence of tasks.

9. The non-transitory computer-readable storage medium
of claim 8, wherein the instructions to perform the step of
receiving the first script further comprise instructions to per-
form the steps of:

selecting the first script from a library of user-defined

scripts; and

receiving modifications to the selected first script compris-

ing at least one reference to a configuration property
defined for one of the one or more application compo-
nents.

10. The non-transitory computer-readable storage medium
of claim 8, wherein the instructions to perform the step of
receiving the first script further comprise instructions to per-
form the step of:

receiving an input through a graphical user interface that

implements drag-and-drop functionality in a region
showing the sequence of tasks as a plurality of connected
icons, wherein the input identifies the first script and
indicates the first placement location for the first script.

11. The non-transitory computer-readable storage medium
of claim 10, further storing instructions that, when executed
in the computing device, perform the step of:

receiving another input through the graphical user inter-

face to reorder the sequence of tasks, wherein the
deployment plan is generated to include execution of the
sequence of tasks as reordered.

12. The non-transitory computer-readable storage medium
of'claim 8, wherein the change to the topology is a deletion of
one of the one or more application components, and wherein
the received first script is anchored to a task that is performed
to deploy another one of the one or more application compo-
nents.

13. The non-transitory computer-readable storage medium
of claim 8, wherein the change to the topology is a change in

10

15

20

25

30

35

40

45

50

55

60

65

30

a dependency from a first application component to a second
application component, and wherein the received first script
is anchored to the first application component such that the
received first script reorders along with the sequence of tasks
for deploying the first application component.
14. The non-transitory computer-readable storage medium
of claim 8, further storing instructions that, when executed in
the computing device, perform the step of:
receiving a second script and a second placement location
for the second script in a sequence of tasks that are
performed external to and not in conjunction with
deploying any of the one or more application compo-
nents of the application, wherein the deployment plan is
generated to include execution of the second script at the
second placement location.
15. A computer system for managing deployment of an
application having one or more application components
executing on a plurality of virtual computing resources, the
computer system comprising a system memory and a proces-
sor programmed to perform the steps of:
receiving a first script and a first placement location for the
first script in a sequence of tasks that are performed to
deploy the one or more application components;

generating a deployment plan having the sequence of tasks
that are performed to deploy the application according to
a topology of the plurality of virtual computing
resources and the one or more application components
executing thereon, wherein the deployment plan
includes the first script for execution at the first place-
ment location;

determining a change to the topology of the plurality of

virtual computing resources and the one or more appli-
cation components from which the deployment plan is
generated; and

generating a corresponding change to the deployment plan

while preserving the first script at the first placement
location in the sequence of tasks.

16. The computer system of claim 15, wherein the proces-
sor is further programmed to perform the step of:

receiving an input through a graphical user interface that

implements drag-and-drop functionality in a region
showing the sequence oftasks as a plurality of connected
icons, wherein the input identifies the first script and
indicates the first placement location for the first script.

17. The computer system of claim 15, wherein the proces-
sor is further programmed to perform the step of:

receiving a second script and a second placement location

for the second script in a sequence of tasks that are
performed external to and not in conjunction with
deploying any of the one or more application compo-
nents of the application, wherein the deployment plan is
generated to include execution of the second script at the
second placement location.

18. The computer system of claim 15, wherein the change
to the topology is a deletion of one of the one or more appli-
cation components, and wherein the received first script is
anchored to a task that is performed to deploy another one of
the one or more application components.

19. The computer system of claim 15, wherein the change
to the topology is a change in a dependency from a first
application component to a second application component,
and wherein the received first script is anchored to the first
application component such that the received first script reor-
ders along with the sequence of tasks for deploying the first
application component.

#* #* #* #* #*

